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Abstract: Collaborative learning has been widely used in educational contexts. Considering 

that group formation is one of the key processes in collaborative learning, the aim of this paper 

is to propose a method to obtain inter-homogeneous and intra-heterogeneous groups. In this 

method, the group formation problem is translated into a combinatorial optimization problem, 

and an improved genetic algorithm approach is also proposed to cope with this problem. To 

evaluate the proposed method, we carry out computational experiments based on eight datasets 

with different levels of complexity. The results show that the proposed approach is effective and 

stable for composing inter-homogeneous and intra-heterogeneous groups. 
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1. Introduction 
 

Collaborative learning (CL) is an instructional strategy which allows students to work together in small 

groups toward a common learning goal (Dillenbourg, 1999). To apply this strategy, the initial task is 

assigning students into groups, which is a crucial process. Previous research has indicated that well-

structured CL groups allow for a good interaction among members, which is fundamental to obtain 

appropriate learning results (Sadeghi and Kardan, 2015). Building inter-homogeneous and intra-

heterogeneous groups based on student characteristics has been considered as an effective approach 

for the formation of well-structured groups (Dascalu et al., 2014; Moreno, Ovalle and Vicari, 2012). 

However, when the number of students and characteristics under consideration is very large, it is almost 

impossible for an instructor to organize optimal learning groups that meet multiple criteria. 

Therefore, we translate the group formation problem into a combinatorial optimization problem. In 

order to cope with this problem, an improved genetic algorithm is presented. 
 

 

2. Problem Description and Mathematical Formulation 
 

In this section, the group formation problem is formally described and mathematically formulated. 
Assume that there is a set of n students in a class S, S={s1,…,si,...,sn}, which are required to be divided 
into g groups G, G={G1,...,Gk,...,Gg}. Each group Gk is made up of a zk number of students. Let 
C={c1,…,cu,...,cp+q} be the set of all required attributes for the grouping of students, where p and q are 
the number of student characteristics for achieving inter-homogeneous and intra-heterogeneous groups. 
Let viu  denote the value of attribute cu  associated with student si, normalized between 0 and 1. 

Letvu denote the mean value of attribute cu associated with all the participated students, and letvk,u  

represent the mean value of attribute cu associated with students in group Gk. 
For inter-homogenous groups (all the groups have similar compositions), the sum of the 

squared differences (Fhomo) to measure such homogeneity with regard to the p characteristics between 
each group and the whole sample is calculated as: 

g p 2 
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where wu is the importance degree of attribute cu. 

For  intra-heterogeneous  groups  (each  group  with  members  who  are  as  different  among 

themselves as possible), Fhete indicates the heterogeneity within groups is computed as: 
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In order to achieve the optimal groups, the mathematical model is defined as follows: 

Min F 
whomo Fhomo whete Fhete 

whomo whete 

 

 

(3) 

Subject to  
si Gk ,i 1, 2, , 

n; k 1, 2, g 

 

(4) 

Gx Gy , x 1, 2, , g; y  

1, 2, , g; x y 

| zx zy |1, x 1, 2, , g; y  1, 

2, , g; x y 

(5) 

(6) 

where whomo and whete are the importance degrees of inter-homogenous and intra-heterogeneous 
grouping respectively. The objective function (3) is to achieve the optimal groups. Constraint (4) and 
constraint (5) ensure that each student can be assigned exactly into one group. Constraint (6) guarantees 
that the size difference of any two groups is not more than one. 

 

 

3. An Improved Genetic Algorithm for the Group Formation Problem 
 

To solve the group formation problem, an improved genetic algorithm is proposed. Genetic algorithms 

(GAs) have been successfully applied to solve a variety of combinatorial optimization problems. 

However, previous studies reported that using the standard genetic algorithm (SGA) easily led to 

unsatisfactory searching behaviors (e.g. premature convergence) when faced with large-scale and 

complex real-world problems (Wang and Tang, 2011). In order to overcome the shortcomings of the 

SGA, we present an improved genetic algorithm (IGA) to solve the group formation problem. 

The IGA starts with a set of initial feasible solutions which are represented by adopting an 

integer permutation encoding scheme. Thus, each solution is encoded as a list with a length equal to n 

(i.e. the list is a permutation of n students).We generate the initial population by a random method 

which ensures the diversity of the population and improves the convergence speed and the quality of 

final solutions. The performance of each solution is evaluated by a fitness function that corresponds to 

the objective function of the optimization problem. In general, the chromosomes with greater fitness 

value are more likely to be selected to survive and replicate. For the objective function is defined as a 

minimization problem and the value of f is always positive (Section 2), the fitness function can be 

calculated as follows: 

Fitness=1/F (7) 
In each generation, some individuals are selected by applying the stochastic universal sampling 

selection, and then GA employs the partially mapped crossover and the swap mutation to generate new 

offspring chromosomes. Besides the traditional crossover and mutation operators, the simple inversion 

mutation operator is also performed, which is used to increase the diversity of the population. After the 

genetic operation, an additional elitist reinsertion strategy is used to prevent the loss of good 

information and fill the generation gap. The elitist strategy guarantees that the best chromosomes 

always survive intact from one generation to the next. 
 

 

4. Computational Experiments 
 

To evaluate the effectiveness and efficiency of the proposed algorithm, eight datasets with different 

levels of complexity are generated randomly for the computational experiments. We evaluate the 

performance of the IGA approach by comparing it with another two competing algorithms, the 

exhaustive method (EM) and the random method (RM). Table 1 show the results obtained by the EM, 

the RM and the IGA for the 8 datasets (all the three methods are implemented in MATLAB). Columns 

Obj. and T report, respectively, the average value of the objective function during ten runs and the 

average computational time in seconds. 
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The results show that the EM only obtains optimal solutions for the first four datasets, and the 

executing time increases significantly as the number of students grows, so it is practically infeasible for 

solving the group formation problem. Unlike the EM, the RM and the IGA can find solutions for all 8 

datasets within an acceptable time. Although the computation time of the RM is the shortest, the value 

of objective function obtained by the RM is the highest. For the IGA, it also can obtain the optimal 

solutions for the first four datasets and the quality of the solutions found by the IGA is always better 

than the RM. Therefore, the IGA is a more effective method which can achieve a satisfactory solution 

for a reasonable computational time by comparison with the EM and the RM. 

 

Table 1: Results obtained by the exhaustive method, the random method and the proposed method. 
 

Dataset Exhaustive Method Random Method Proposed Method 

 Obj. T(s) Obj. T(s) Obj. T(s) 

1 4.4107 0.0458 4.4635 <0.0001 4.4107 0.1894 

2 6.1213 0.2928 6.6010 <0.0001 6.1213 0.5115 

3 7.5917 60.5364 8.4560 <0.0001 7.5917 1.5994 

4 8.6020 29479.7019 10.3985 <0.0001 8.6020 2.6686 

5 N/A N/A 17.1713 0.0001 14.9955 7.1883 

6 N/A N/A 40.7732 0.0002 34.4190 42.3692 

7 N/A N/A 82.2104 0.0004 64.8140 165.5741 

8 N/A N/A 123.3962 0.0006 101.1219 727.5106 

N/A: not available. 
We analyze the robustness of these two stochastic methods (i.e. the RM and the IGA) by 

calculating the standard deviation during ten runs on each dataset to measure the dispersion of the value 

of objective function. The variation of the standard deviation corresponding to the IGA fluctuates 

between 0.0000 and 0.0548, while that corresponding to the RM fluctuates between 0.0458 and 3.6469. 

Thus, we consider that the IGA is more stable to solve the group formation problem with different sizes. 
 

 

5. Conclusion 
 

In this paper, we propose a method based on an improved genetic algorithm to solve the group 

formation problem. To evaluate the performance of the proposed method, a series of computational 

experiments are conducted. The simulation results indicate that the proposed method is an effective and 

stable to method to compose inter-homogeneous and intra-heterogeneous groups. 
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