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Abstract: When learners collaborate on complex problems and open-ended tasks, the 
mechanism of negotiation plays a crucial role in establishing a common understanding 
and achieving a shared goal among them. Research has shown that negotiation 
improves problem-solving processes, making it an essential skill to be developed 
among learners. In this study, we propose a method for automating the identification of 
negotiation in learners' discourse during collaboration. We leverage language models 
like BERT, RoBERTa, and GPT2 along with traditional machine learning models like 
logistic regression to detect utterances of negotiation in learners' discourse while they 
collaboratively solve engineering estimation problem in an Open-Ended Learning 
Environment (OELE) called Modeling Based Estimation Learning Environment 
(MEttLE). Our findings suggest that our approach can accurately identify negotiation 
utterances with a high accuracy of 0.924 and 0.781 kappa value with a relatively smaller 
training set. Our method is the first step in real-time detection of negotiation, thereby 
enabling educators to design scaffolds and environments to help learners engage in 
effective negotiations. 
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problem-solving. 

 
1. Introduction 
 
Collaborative problem-solving (CPS) is a vital skill involving multiple individuals working 
together to devise and sustain collective solutions to challenges (Fiore et al., 2017). CPS is 
crucial as the modern workforce increasingly demands seamless collaboration within diverse 
teams, efficient exchange of expertise, and effective communication across disciplinary 
boundaries (Pugh, Rao, Stewart, & D'Mello, 2022). To foster this skill, it is imperative to 
create opportunities for students to engage in productive CPS activities. 
 Despite the positive impact of CPS on both academic and social educational 
outcomes, significant challenges persist when implementing CPS effectively within everyday 
classroom settings (Johnson, Johnson, & Smith, 2007). Teachers encounter difficulties in 
structuring group interactions and monitoring fruitful collaboration (Van Leeuwen, Janssen, 
Erkens, & Brekelmans, 2013). Students also face hurdles in CPS, including uneven 
participation in group tasks (Freeman & Greenacre, 2010) and deficiencies in 
communication and collaborative skills (Li & Campbell, 2008; Pauli, Mohiyeddini, Bray, 
Michie, & Street, 2008). 

To address these challenges, it is imperative to pinpoint and assess essential CPS 
processes exhibited by learners and offer diagnostic feedback (Fiore et al., 2017). This 
paper focuses on automating the identification of a critical CPS process—Negotiation—while 
students collaboratively tackle complex problem within an Online Environment for Learning 
and Education (OELE) called Modeling Based Estimation Learning Environment (MEttLE). 
This automated analysis will subsequently empower educators to provide valuable feedback 
to learners.  

The mechanism of negotiation is vital for effective collaboration, particularly in 
complex problem-solving domains, enabling collaborators to employ diverse strategies and 
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reach agreements through critical evaluation, justification, sensemaking, and co-construction 
of solutions (Hesse et al., 2015). Previous research has demonstrated the productive 
behaviours exhibited by learners when engaging in negotiation within OELEs during complex 
problem-solving tasks (Khwaja & Murthy, 2022). Therefore, fostering negotiation in such 
environments is crucial for supporting learners' problem-solving processes. However, 
identifying negotiation utterances in learners' discourse is challenging, particularly when the 
interactions are complex and multi-layered. Also, the manual identification of negotiation 
utterances is time-consuming and impractical for large-scale studies. 

To address this gap, researchers have proposed a method for automating the 
identification of negotiation and other collaborative mechanisms in learners' discourse during 
the process of collaborative problem-solving (Flor et al., 2016; Pugh, Rao, Stewart, and 
D'Mello, 2022; Hao et al., 2017). We extend this work by leveraging state-of-the-art 
language models like BERT, RoBERTa, and GPT2 to automatically detect negotiation 
utterances in learners' discourse while they solve open-ended problems. Results show that 
GPT2 emerged as the best-performing model with an accuracy of 0.924 and a kappa value 
of 0.781. The novelty of our research lies in the fact that the models employed here 
demonstrate improved performance compared to existing approaches in automating the 
identification of negotiation utterances in learners' discourse during collaborative problem-
solving. Additionally, the study presents a unique context by focusing on the engineering 
estimation problem, which is a frequent practice used by engineers and scientists when 
exact data and precise governing equations are unavailable (Mahajan, 2014).   

 

 
Figure 1. The figure shows a collaboration between two students, and the discourse data is 
captured and converted to transcripts. This transcript is then analysed by the ML models for 
generating discourse analytics for teachers and personalised feedback for students, which is 
first delivered to the teacher, who has the agency to modify it before delivering it to students. 

 
The study constitutes a part of a larger research that aims to enhance productive 

behaviours in collaborations by providing students with personalised feedback (Fig. 1). Here, 
the teacher will have access to the discourse analytics affording them the agency  to modify 
the feedback provided by the models. The overarching goal  is to attain insightful 
perspectives on the evolution of different and essential collaborative learning mechanisms 
during collaboration. This can help educators design scaffolds to enable learners to engage 
in productive behaviours. 

The paper is structured as follows: Section 2 presents the background and literature 
synthesis, followed by the OELE description in Section 3. We then delineate the research 
goal and procedure in Section 4. Subsequently, we present the results in Section 5, leading 
to the discussion and conclusion in Section 6. 
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2. Background and Related Work 
 
In this section, we first highlight the significance of negotiations in the process of 
collaborative problem-solving. The second sub-section discusses the theoretical CPS 
framework that we have employed for the manual coding of the data. Then, we discuss the 
state-of-the-art text classification algorithms. Finally, we discuss different studies that aim to 
detect negotiation in discourse data. 
 
2.1 Negotiation and Problem-solving 
 
Effective collaboration in Computer Supported Collaborative Learning (CSCL) research 
necessitates negotiation when dealing with divergent opinions and ideas from peers. 
Negotiation plays a crucial role in complex problems and open domains that require critical 
examination, the convergence of ideas, and contributions from all collaborators to arrive at a 
suitable solution (Carell & Herrmann, 2009). In this context, it can be defined in various 
ways, including resolving conflicts, attempting to agree on goals, and critically examining 
different perspectives (Baker, 1994; Fleck et al., 2009). Learners engaged in a negotiation 
must present their ideas, defend their positions, and use various strategies to reach an 
agreement. This process must ultimately result in a shared understanding of the problem to 
ensure that all collaborators have reasoned and agreed upon a common ground in problem-
solving (Beers, 2006). Through negotiation, learners can engage in meaningful discussions 
and sensemaking, exchange ideas, learn from their peers, and contribute to productive 
outcomes. It is particularly vital in OELEs, where learners need to explore new ideas, 
tools  and critically examine complex problems. Therefore, it is essential to identify and 
understand negotiation utterances and design scaffolds to foster it among learners to 
support their problem-solving abilities. 
 
2.2 Collaboration Learning Mechanisms Framework to identify negotiation 
 
To identify and comprehensively understand instances of negotiation among learners within 
MEttLE (Kothiyal & Murthy, 2018), we employed the Collaboration Learning Mechanisms 
(CLM) framework developed by Fleck et al. (2009). This framework centres on two pivotal 
mechanisms for collaborative learning within open problem contexts: coordination and 
discussion. Within these mechanisms, the CLM framework emphasises how specific actions 
and verbal interactions represent different aspects of collaboration and how they collectively 
contribute to productive outcomes in collaborative problem-solving activities. The 
collaborative discussion mechanism entails the exchange of information, ideas, and 
negotiation of meaning, while the coordination mechanism underscores joint attention, 
awareness, and narration. This framework helped us identify and understand the mechanism 
of  negotiation that involved verbal discourse of disagreeing, conflicting, proposing 
alternatives, criticising, explaining, and justifying one's idea, and actions such as undoing, 
deleting, nodding head to depict disagreement, etc. CLM defines negotiation as a 
conversation that involves all parties being critically and constructively engaged with each 
other’s proposals for joint consideration. We then further added 9 more mechanisms of 
collaboration based on our data. To ensure the reliability and validity of our approach, two 
researchers independently calculated the inter-rater reliability for 10% of the dataset, 
resulting in a robust kappa score of 0.7, indicative of strong agreement between the 
researchers. Among the various collaborative mechanisms, we observed that learners were 
engaged in negotiation approximately 31.5% of the time during their problem-solving 
activities. 
 
Table 1. The table presents the episode of Negotiation from Group 2, where both the 
learners S3 and S4 read the problem statement and immediately get into a discussion on 
how to solve it. S3 is seen to propose a solution method that S4 does not easily accept. 
Student Utterences Time Codes 
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S3 lets just skip the part like there will be some 
delays ..assume that the entire time we have the same 
velocity like it was 0, then it reaches to its maximum ... 

0:24:18 Negotiation 

S4 (shakes head in disagreement and then rereads 
Problem statement and says ) So the entire track is 50 
meters. So you have to consider that it will start from a 
stop position initially 

0:24:32 Negotiation 

S3  Yes, it will start from stop position but .what I am saying 
is it will not gradually increase from the stop position . 
For this problem, let us just assume that it will directly 
reach the end point .. 

0:24:50 Negotiation 

S4 Yes but (interrupts S3) But there needs to be some 
assumption behind this right? What are you basing your 
assumption on? 

0:25:06 Negotiation 

S3 I am just reducing all the functions like..whatever the 3rd 
parameters 

0:25:11 Negotiation 

 
2.3 Text Classification 
 
Text classification, a machine-learning technique used to categorise open-ended text into 
predetermined categories, has gained significant attention in research. Its application to 
coding discourse data addresses the time and labour-intensive nature of manual coding 
processes. While manual coding can consume days of effort, machine learning models can 
accomplish the same task within a few minutes, thereby substantially reducing the required 
time and resources. 

Recent advancements in large language models have presented opportunities to 
enhance classification accuracy further. Among these models, Bidirectional Encoder 
Representations from Transformers (BERT) (Devlin et al., 2018) have emerged as a notable 
text representation model specifically designed for natural language processing. BERT 
distinguishes itself from previous models by generating dynamic and contextualised word 
representations through unique training tasks, such as masked-language modelling and 
next-sentence prediction. Leveraging the mechanism of transfer learning, BERT can be 
readily adapted to downstream tasks with relative ease. 

In addition to BERT, another influential language model is RoBERTa (Liu et al., 
2019). RoBERTa, based on transformer architecture, has garnered attention for its 
remarkable language generation capabilities. Pretrained on a massive corpus of text data, 
RoBERTa exhibits exceptional performance across various natural language processing 
tasks, including text classification. By capturing contextual dependencies and semantic 
relationships between words and phrases, RoBERTa effectively comprehends and 
generates coherent text. 

Another prominent language model worth mentioning is GPT2 (Generative 
Pretrained Transformer 2). GPT2 is a transformer-based model known for its impressive 
language generation capabilities. It is trained on a massive corpus of text data and has 
demonstrated exceptional performance in a wide range of natural language processing 
tasks, including text classification. GPT2 captures the contextual dependencies and 
semantic relationships between words and phrases, enabling it to understand and generate 
coherent text. 

To summarise, the availability of powerful language models such as BERT, GPT2, and 
RoBERTa offers researchers the opportunity to enhance the accuracy of text classification. 
Their proficiency in capturing contextual information, coupled with their transfer learning 
capabilities and demonstrated success across various natural language processing tasks, 
positions them as promising options for automating the categorisation of discourse data. 
 
2.4 Collaboration Analytics 
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Collaboration Analytics pertains to the methodologies and strategies employed in the 
automated or semi-automated capture, analysis, mining, and extraction of data concerning 
interactions among collaborators (Schneider et al., 2021). We ground our work in the 
existing domain of linguistic modelling of collaborative problem-solving. In this sub-section, 
we shall discuss the existing research that makes use of advanced NLP methods to analyse 
discourse data in CPS. This discourse data emerge either from the text chats or is 
transcribed from the speech) and is used to model various skills during CPS, including 
negotiation, regulation, argumentation etc. 
 The paper by Flor et al. (2016) presents a study that investigates the use of 
automated techniques for accurately categorising interactions in collaborative problem-
solving within simulated science tasks. It applies natural language processing (NLP) 
methods to analyse and classify these interactions using Naïve Bayes (NB) and Hidden 
Markov Models (HMM). The results reveal the effectiveness of the automated classification 
models in accurately identifying and categorising various types of interactions, achieving an 
average accuracy of 59.2%.  
 Pugh, Rao, Stewart, and D'Mello (2022) investigated the feasibility of detecting seven 
cognitive and social CPS skills (including sharing information, negotiation, etc.) in classroom 
and lab settings. The participants were middle school kids who collaboratively solved math 
and physics problems. They achieved an AUROC value of 0.78 in the classroom setting and 
0.83 in the lab setting using BERT.  

The work by Hao et al. (2017) focuses on developing an automated annotation 
system called CPS-rater. This tool annotates the discourse into various CPS skills like 
negotiation, regulation etc. They have used different models, including Random Forest (RF) 
and NB. Linear chain conditional random field emerged as the best model, achieving an 
accuracy of 0.732 and a kappa value of 0.636.  

To summarise, several studies have contributed to the field of automated analysis 
and classification of interactions in collaborative problem-solving (CPS) activities. Building 
upon these previous works, our study aims to extend the existing research by introducing 
novel contributions. Firstly, we focus on the specific context of the engineering estimation 
problem within collaborative problem-solving. This contextual specificity provides unique 
insights and findings applicable to the domain of engineering problem-solving. Secondly, our 
work employs advanced machine learning models that have demonstrated improved 
performance compared to existing approaches. By utilising these models, we aim to 
enhance the accuracy and efficiency of automated identification and categorisation of 
negotiation utterances in learners' discourse during collaborative problem-solving. These 
advancements contribute to the broader understanding and advancement of automated 
analysis techniques in the domain of CPS, addressing the need for more precise and 
effective analysis of collaborative interactions. 
 
3. Learning Environment 
 
The Modelling-Based Estimation Learning Environment (MEttLE), as shown in Figure 2, is 
an open-ended learning environment designed to scaffold novice learners in their estimation 
problem-solving. The tool's five sub-goals trigger a model-based estimation process that is 
essential for solving the estimation problem (Figure 2a). The three-phased model-building 
sub-goals, which include functional, qualitative, and quantitative aspects, help learners 
create, contextualise, and evaluate models of complex problems, one calculation, and one 
evaluation. MEttLE also includes metacognitive prompts (Figure 2b) that encourage learners 
to reflect on their models and problem-solving processes, as well as simulators (Figure 2c), 
hints, an info centre, guide me, question prompts, and a problem map to facilitate the 
modelling process. Novice learners have the flexibility to choose any path and revisit any 
sub-goals at any time in MEttLE.  
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Figure 2. Overview of MEttLE Interface with sub-goals (2a), Detailed sub-goal with 

Metacognitive Prompts and other scaffolds (2b) and Simulator-4(2c). 
 

To solve the estimation problem in this study, the solver is tasked with estimating the 
power of a car while comprehending the underlying problem system. To achieve this, they 
must analyse how the car behaves under the given operating conditions, determine the 
dominant parameters for these conditions, and create an equation involving the dominant 
parameters. Additionally, they must make assumptions and approximations to create and 
determine a simplified model of the problem context and its corresponding mathematical 
equation. One noteworthy aspect of MEttLE is its open design, which provides immense 
opportunities for collaborative learning wherein learners undertake meaningful discussions 
and negotiations to solve this problem. 
 
4. Methods 
 
4.1 Participants 
 
The participants in this study were three dyads comprising two female and four male 
students (age range of 18-21 years) from 3rd or 4th-year undergraduate engineering 
colleges in Mumbai. Students from mechanical or electronics engineering were chosen as 
participants, as the problem in MEttLE required knowledge specific to these disciplines. The 
students were paired randomly based on their availability based on a pre-study Google form 
that collected their demographic details. IRB approval from our institution was sought. 
 
4.2 Procedure and Data Collection and Data Analysis 
 
The study was conducted in a research lab setting where the three engineering 
undergraduate dyads participated on different days. The researcher explained the study 
goal, the procedure, and the data that would be collected, after which the participants signed 
the consent form. The lab setup involved a single computer with MEttLE for both 
participants, who had to solve the estimation problem in it collaboratively. They were asked 
to articulate their views explicitly during the collaboration. On average, the time taken by 
pairs to interact with MEttLE was 90 minutes. Data was collected from multiple sources, like 
screen recording using OBS Studio (OBS, 2021), which ran on a laptop containing MEttLE 
as well as audio and video data; however, for this study, we only used the transcription of 
their audio data. Learners’ discourse data was then passed to an AI tool called Otter.ai for 
speech-to-text transcription. Further, researchers coded the data using the CLM framework 
to identify learners’ negotiation instances.  
 
4.3 Feature extraction, model training, and evaluation 
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In this study, we employed three traditional machine learning classifiers, namely Logistic 
Regression (LR), NB, and RF. We used the features obtained via TF-IDF (Spärck Jones, 
1972) and the Word2Vec (Mikolov et al., 2013) approach. The intention of using these 
classifiers was that they are employed in most of the research in the domain of learning 
analytics. Additionally, we used three state-of-the-art pre-trained neural networks for natural 
language processing that include BERT, RoBERTa, and GPT2. These models were trained 
for binary classification problem, i.e. to classify discourse data into two categories: the 
presence of negotiation (labelled as 1) and the absence of negotiation (labelled as 0)  We 
shall first discuss the feature extraction, model training of traditional machine learning 
models before delving into large language models.  TF-IDF Feature Extraction: 
      We employed the TfidfVectorizer from the 
sklearn.feature_extraction.text module to convert the text data into numerical features. The 
vectoriser was configured with parameters such as a minimum document frequency of 5 and 
a maximum of 10,000 features. This ensured that only frequently occurring words were 
considered, and the feature dimensionality was controlled. 

In addition to TF-IDF, we trained a Word2Vec model using the gensim library. The 
Word2Vec model learned word embeddings from the training sentences with specific 
hyperparameters, such as size = 100, window = 5, min_count = 1, and workers = 4. These 
parameters were selected based on prior experimentation and domain knowledge. 
    The training data was preprocessed and divided into two sets: one for the TF-IDF-
based approach and the other for the Word2Vec-based approach. For TF-IDF, the training 
data was transformed into TF-IDF features using the fitted vectoriser. For Word2Vec, the 
training data sentences were tokenised and converted into word embeddings using the 
trained Word2Vec model. The target variable was created by encoding the labels as 
integers. 
    We trained three classifiers, LR, RF, and NB, on the training data.  We evaluated the 
performance of the classifiers on the test data using various metrics like classification 
accuracy, F1-score, and kappa value ( explained at the end of this section). 
For BERT, we tokenised the texts using the Hugging Face Transformers library's tokeniser 
function and converted them to input features with padding and truncation. We split the data 
into a training set and a validation set and labelled each instance of discourse as either 
negotiation or non-negotiation. We then created training and validation datasets as PyTorch 
TensorDatasets, using the input features and labels. We fine-tuned the pre-trained BERT 
model for our specific task of classifying negotiation and non-negotiation discourse data. We 
defined the training parameters, such as batch size, number of epochs, and learning rate, 
and used the AdamW optimiser and the Cross-Entropy Loss function. In our case, we 
considered a batch size of 16, and the number of epochs was taken to be four. The learning 
rate was set as 2*(10)-5. 

We then created data loaders for the training and validation datasets and trained the 
model on the training set for a fixed number of epochs using mini-batches. During each 
epoch, we optimised the model's weights using backpropagation and stochastic gradient 
descent. 
To evaluate the performance of the model, we used the validation set, which the model had 
not seen during training. The same procedure was applied for RoBERTa and GPT2 as well, 
and the hyperparameters were also chosen to be the same. For performance evaluation, we 
chose the following four metrics: 

1. Classification accuracy (CA): the ratio of the number of correct classifications to the 
total number of classifications. 

2. F score (F1): is the harmonic mean of recall and precision. 
3. Kappa (κ): measures agreement between the actual and the predicted labels by 

considering the by-chance prediction. κ is calculated using Eq. (1), where P0 is the 
overall accuracy of the model and Pe is the measure of the agreement between the 
model predictions and the actual class values as if happening by chance. 

   ……… (1) 
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5. Result  
 
This section describes the results of the prediction models developed for classification.  
 
Table 2. The evaluation metric of performance of ML models on “negotiation” classification. 

Text Features Classifier CA F1 Kappa 
TF-IDF LR        0.818 0.777 0.283 

NB        0.794 0.712 0.070 
RF        0.903 0.893 0.664 

Word2Vec LR        0.784 0.6890 0 
NB        0.369 0.355 0.076 
RF        0.873 0.853 0.530 

 BERT        0.907 0.906 0.722 
 RoBERTa        0.889 0.889 0.675 
 GPT2        0.924 0.924 0.781 

The performance of various machine learning and deep learning models was evaluated on 
the task of classifying discourse data into negotiation and non-negotiation. The models were 
trained on a dataset with 1989 instances and tested on a dataset with 686 instances, and 
this data split was done on a group level, i.e., data from two groups was used for training, 
and it was tested on the discourse of the remaining group. The dataset was preprocessed 
using standard NLP techniques like tokenisation, stop-word removal, and stemming. Two 
types of features were used for training the traditional machine learning models: TF-IDF and 
Word2Vec.  

The machine learning models used in this study were LR, NB, and RF. The deep 
learning models used were BERT, RoBERTa, and GPT2.  
The results of the experiment are summarised in Table 2. The performance of the models 
was evaluated using classification accuracy, the F1-score, and the kappa metric (explained 
in the previous section). The results show that deep learning models outperformed traditional 
machine learning models in terms of F1-score and kappa value. GPT2 achieved the best F1-
score and kappa values of 0.924 and 0.781, respectively.  

The NB model exhibited the lowest performance, achieving an F1-score of 0.355 
when utilising Word2Vec features. Similarly, LR demonstrated the least favourable kappa 
score of 0 when employing the Word2Vec features, suggesting that its classification results 
were not significantly different from those that could be attributed to random chance alone.  
In addition, the results indicate that the choice of feature representation also plays a crucial 
role in the performance of the models. The results demonstrate that the traditional machine 
learning models showed better performance with TF-IDF features. 

Overall, the results of this study suggest that deep learning models like BERT, 
RoBERTa, and GPT2 are more effective than traditional machine learning models for the 
task of classifying discourse data into negotiation and non-negotiation. The choice of feature 
representation also plays a significant role in the performance of the models 
 
6. Discussion and Conclusion 
 
In conclusion, this study proposes an approach for automating the identification of 
negotiation in learners' discourse during collaboration. By leveraging language models like 
BERT, RoBERTa, and GPT, we accurately identified negotiation utterances in learners' 
discourse while they solved complex engineering estimation problems in an OELE called 
MEttLE with high precision and recall.  

The practical applications of our research have the potential to impact educational 
settings greatly. We envision the utilisation of language-based collaboration analytics (CA) 
models in authentic educational environments for targeted interventions to enhance CPS 
skills. One key application involves the deployment of automated reports to teachers who 
oversee multiple groups of students engaged in CPS activities. These reports, accessible 
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through a teacher dashboard, could provide insights into each group's engagement with 
various aspects of CPS, such as constructing shared knowledge. This functionality 
empowers teachers to identify groups requiring additional support and allocate their 
resources effectively. Moreover, teachers can pinpoint individual students' strengths and 
weaknesses, facilitating the establishment of personalized improvement goals. 

Furthermore, the proposed approach isn't limited to teacher-facing analytics; it can 
also provide learner-facing feedback to foster CPS skill development. CA models could offer 
individual team members insights into their contributions and demonstration of different CPS 
skills. This personalized feedback enhances self-awareness, self-reflection, and the 
evaluation of strengths and weaknesses among learners. Such feedback facilitates tracking 
skill improvement across multiple collaborative engagements. 

Nonetheless, our study is not without limitations. Our results suggest that our 
approach can accurately identify negotiation utterances in this specific context, but the 
generalizability of our method to other learning environments and contexts needs to be 
further investigated. Additionally, the study relied on language models to identify negotiation, 
which may not capture nonverbal cues and context-specific language use. Future research 
could explore the use of multimodal methods to identify negotiation in discourse. 
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