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Abstract: This study aims to examine the effects of audio and tactile biofeedback 
based on EEG attention levels in anti-phishing education on university students’ 
relaxation. The study developed an attention feedback system to provide learners with 
audio and tactile biofeedback by collecting learners’ EEG attention signals and 
converting them to attention levels. The research method employed a quasi-
experimental design. The participants were 90 university students who had no prior 
anti-phishing learning experiences. A random grouping was adopted to divide the 
participants into a non-immediate feedback group, an audio-immediate feedback 
group, and a tactile-immediate feedback group. Each participant was required to wear 
a portable EEG device that was connected to an attentional feedback system to collect 
their EEG attention and relaxation signals during the learning activity. After the learning 
activity, participants were asked to complete a post-activity feedback questionnaire. 
The results showed that the tactile-immediate feedback group displayed a significantly 
higher level of relaxation as compared to the audio-immediate feedback group. The 
study suggests that instructors may consider using tactile-immediate biofeedback 
based on learners’ attention levels to help regulate attention and improve relaxation in 
online learning environments. 
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1. Introduction 
 
Remote online learning became a new norm in education after the COVID-19 pandemic in 
March 2020. The impact has silently revolutionized the education system to embrace 
technology-based cloud learning. However, this brings some challenges. According to the 
trends report from the Anti-Phishing Working Group (APWG), there was a sudden increase in 
phishing attacks against videoconferencing service provider Zoom (APWG, 2020) where 
schools worldwide were switching to video conferencing for their remote learning. Another 
survey from the 2020 Cyber Threats Report (Netwrix, 2020) stated that 33% of educational 
organizations felt they were at greater cybersecurity risk than pre-pandemic, 89% of them 
found new security gaps caused by the rapid transition to remote learning, and 50% of 
educational organizations had experienced phishing attacks. Today, there is growing concern 
about VPN exploitation and credential stuffing compared to pre-pandemic when malware or 
phishing was a major concern. Growing demand for cybersecurity awareness training will 
become an important trend in K-12 schools and higher education institutions. 
Previous studies showed that effective anti-phishing education is the key to preventing 
phishing attacks (Sun et al., 2016). However, many of the anti-phishing materials highly rely 
on students’ self-learning. The complex digital worlds and other environmental distractions are 
competing with human’s limited attentional resources and increasing stress. To make self-
learning effective, educational psychologists should accelerate the research on innovative 
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approaches to assist students’ self-regulation of attention and motivation, as well as managing 
stress in the midst of learning remotely and individually. 
A branch of brain-computer interface (BCI) study has emerged that focuses on designing 
attention-aware systems that assist users in effectively allocating their attentional focus to 
optimize engagement (Vertegaal et al., 2006). Since the 1970s, BCI has been actively 
employed as an assistive technology for clinical or therapeutic purposes, and has been applied 
to “locked-in” patients or children with attention-deficit/hyperactive disorder (ADHD). In recent 
decades, the development of Electroencephalography (EEG) and the advances in computing 
power have provided a cost-efficient, safe, and portable approach which not only allows the 
use of EEG data to understand users’ cognitive states, but also serves as immediate 
communication with adaptive interfaces of visual, audio, or tactile feedback to influence and 
augment cognitive functions (Tan & Nijholt, 2010; Vasiljevic & Miranda, 2023). Sun and Yeh 
(2017) used audio biofeedback based on EEG attention signals to improve learners’ attention, 
and showed that it was an effective strategy. The EEG biofeedback can help learners quickly 
achieve deep relaxation (Rydzik et al., 2023). Xu and Zhong (2018) showed that when 
learners’ attention and relaxation levels are high, this state of mind can help them learn better. 
Relaxation, also known as meditation (Xu & Zhong, 2018), can also reduce anxiety (Hardt, 
2012). Holmes (2019) suggested that understanding how to integrate neuroscience and 
mindfulness education to train self-regulation and match learners’ learning requirements is an 
important issue. Therefore, the issue of how to balance attention and relaxation in the learning 
process needs to be explored. Previous studies indicated that tactile feedback can improve 
novices' relaxation in a digital environment, and does not affect attention (Kim et al., 2021) or 
the performance of visual tasks (Alahakone & Senanayake, 2010). This study aimed to 
develop an attentional feedback system that provides audio and tactile biofeedback based on 
EEG attention levels to create a personalized learning environment. The study also examined 
the effect of audio and tactile biofeedback on university students' relaxation levels. The 
following research question was addressed in this study and the research model is shown in 
Figure 1. 
 
Research question: Are there significant differences in relaxation among university students 
using non-immediate, audio-immediate, and tactile-immediate feedback based on EEG 
attention levels in online anti-phishing education? 
 

 
Figure 1. The research model 

 
 
2. Method 

 
2.1 Participants 
The study participants were 90 university students from Taiwan, excluding those who had prior 
learning experience of anti-phishing. The effective sample comprised 90 (100%) students. The 
participants were randomly divided into three groups: a non-immediate feedback group (n = 
30), an audio-immediate feedback group (n = 30), and a tactile-immediate feedback group (n 
= 30). There were 36 males (40%) and 54 females (60%), with an average age of 22.7 years 
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and a standard deviation of 2.83. In terms of academic areas, 23 participants were from the 
College of Humanities and Social Sciences (25.56%), 13 were from the College of Electrical 
Engineering (14.44%), 11 were from the College of Engineering (12.22%), 10 were from the 
College of Information Science and Technology (11.11%), 10 were from the College of 
Management (11.11%), nine were from the College of Science (10.00%), and 14 participants 
were from other colleges (15.56%). 
 
2.2 Experimental procedure 
 
The informed consent process included the researcher explaining the content of the consent 
form to the participants before the experiment. After the participants understood the content, 
they voluntarily agreed and signed the consent form. Before starting the experiment, 
participants needed to put on the portable EEG device for approximately one minute and 
confirm that it did not make them uncomfortable. In the next step, researchers took the portable 
EEG paired with the attentional feedback system and tested the biofeedback for approximately 
two minutes. When the attentional feedback system was completely prepared, participants 
could start the online anti-phishing learning activity. The learning activity lasted approximately 
30 minutes. The EEG attention and relaxation signals were recorded during the learning 
activity for the three groups. The non-immediate feedback group did not receive any sensory 
feedback based on their mental attention states. The audio-immediate feedback group 
received audio biofeedback when their attention level fell below the threshold of focused 
attention state. The tactile-immediate feedback group received tactile biofeedback when their 
attention level fell below the threshold of focused attention state. After the learning activity, 
participants were asked to complete a post-activity feedback questionnaire, which took 
approximately 10 minutes. The experimental flowchart is shown in Figure 2.  
 

 
 

Figure 2. The experimental flowchart 
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2.3 Instrument 
 
2.3.1 The attentional feedback system 
 
The attentional feedback system was designed and planned by researchers and developed 
by a technology company. This system was a mobile application based on Android 
development platforms, and the mobile device used in this study was a Samsung Galaxy S8 
smartphone. The attentional feedback system was connected to the portable EEG device by 
Bluetooth to collect EEG attention and relaxation signals. It provided attention biofeedback 
based on learners’ attention levels. The attention levels were calculated by the eSense 
algorithm and the ThinkGear chip from NuroSky (2017). The ThinkGear chip enhanced the 
raw EEG signals and filtered noise and muscle movement interference. The eSense algorithm 
converted the raw EEG values into relative attention levels ranging from 0 to 100 to describe 
the range of brain activity. Besides 0 meaning the signals were unable to be used, other scores 
were divided into five ranges to determine the attention levels: 1 to 20 indicated strongly 
lowered levels, 20 to 40 indicated reduced levels, 40 to 60 indicated neutral levels that were 
similar to the baseline, 60-80 indicated slightly elevated levels, and 80 to 100 indicated 
elevated levels. In this study, the biofeedback triggered audio or tactile feedback when the 
attention scores were below 40 and lasted for more than seven seconds. The system 
controlled the interval between two instances of feedback for at least 30 seconds. This study 
also used this system to collect relaxation signals and used the same method to estimate the 
relaxation levels. The user interface and design of audio and tactile biofeedback are shown in 
Figure 3. 
 

 
Figure 3.  The design of audio and tactile biofeedback 

 
 
2.3.2 The post-activity feedback questionnaire 
 
The post-activity feedback questionnaire was modified from Sun and Yeh (2017). The 
questionnaire includes three issues: use experience, timing and perception of receiving 
attention feedback, and other perceptions. It aimed to understand learners’ perceptions of 
using the attentional feedback system, and collected their suggestions to improve the design 
of the learning activity and the biofeedback system in the future. The non-immediate feedback 
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group had five items in their questionnaire, whereas both experimental groups, the audio-
immediate feedback and the tactile-immediate feedback group, had eight items respectively. 
 
3. Results 
 
This study used the analysis of variance (ANOVA) to analyze the results by the IBM SPSS 
Statistic 25 software. The sample conformed to the normal distributions based on the criterion 
of Kline (2011) and did not reject the hypothesis of the equality of variances by Levene’s test 
(F(2,87) = 1.07, p = .35). According to Table 1, the ANOVA results indicated that the relaxation 
levels were significantly different among the three groups (F = 3.70, p < .05, η2 = .08). Because 
the sample sizes of each group were equal, we chose Tukey’s HSD test to analyze the post-
hoc comparisons. The results of Tukey’s HSD’s post-hoc comparison show that the relaxation 
level of the tactile immediate feedback group (M = 40.72, SD = 16.61) was significantly higher 
than that of the audio immediate feedback group (M = 30.41, SD = 13.70), indicating that 
learners who used tactile biofeedback based on EEG attention levels could improve their 
relaxation levels compared to audio biofeedback. Table 1 shows the descriptive statistics for 
relaxation and Table 2 shows a summary of ANOVA for relaxation for the three feedback 
groups. 
 
Table 1. Descriptive statistics for relaxation 

Group M SD skewness kurtosis 

Non-immediate feedback group 
(n = 30) 

38.77 16.27 -0.03 -1.02 

Audio-immediate feedback group 
(n = 30) 

30.41 13.70 0.94  0.90 

Tactile-immediate feedback group 
(n = 30) 

40.72 16.61 0.35 -0.54 

 
Table 2. A summary of ANOVA for relaxation 

Source of variation SS df MS F p η2 Post hoc 

Between-group  1798.31 2 899.16 3.70 < .05 .08 (C) > (B) 

Within-group 21122.87 87 242.78     

Total 22920.18 89      

Note. (A) indicates the non-immediate feedback group; (B) indicates the audio-immediate 
feedback group; (C) indicates the tactile-immediate feedback group 
 
4. Discussion and conclusion 
 
According to the results, the relaxation levels were significantly different among the three 
feedback groups, with the tactile-immediate feedback group displaying higher levels of 
relaxation as compared to the audio-immediate feedback group. Relaxation can reduce 
anxiety (Hardt, 2012) and stress, and improve learners’ learning process (Holmes, 2019). 
Therefore, tactile biofeedback was a helpful strategy to remind learners to focus their attention 
levels without increasing their anxiety or stress, as a higher relaxation level resulted. 
Additionally, tactile-immediate feedback helps learners regulate their behavior and avoid 
competing with visual tasks (Alahakone & Senanayake, 2010). The result is also consistent 
with Kim et al. (2021), who found that tactile feedback can help people adjust their breathing 
to improve attention, while audio feedback interferes with attention. Participants’ written 
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feedback aligned with the findings. Examples are: “When the smartphone vibrates, it reminds 
me to focus on the content on the screen” (Tactile 27); “When the vibration occurs, I will recall 
my status of attention” (Tactile 10); “The sound playing may startle and cause distraction” 
(Audio 29); and “The sound is very harsh” (Audio 28). Therefore, this study suggests that 
instructors can use tactile feedback based on learners' EEG attention levels to enhance their 
relaxation levels. Future research can extend to examining learners’ preferences for volume 
and melody, negative reinforcement issues, and different tactile patterns.
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