
Chen, W. et al. (Eds.) (2016). Proceedings of the 24th International Conference on Computers in Education.

India: Asia-Pacific Society for Computers in Education

Hybrid ITS for DFA Construction Problems

Darshan K. M.a & Viraj KUMARb*

aDepartment of Information Science and Engineering, PES Institute of Technology, India
bDepartment of Computer Science and Engineering, PES University, India

*viraj.kumar@pes.edu

Abstract: Intelligent Tutoring Systems (ITS) that match or exceed human tutoring are often the

product of expensive research efforts in specific domains, and the lack of high-quality ITS in

other domains is partly explained by this high creation cost. In this paper, we propose a hybrid

ITS, where human instructors perform two critical tasks within an otherwise automated system:

(1) giving learners specific types of feedback, and (2) scaffolding students’ reasoning. We argue

that such a hybrid ITS can be cost-effective when the pool of learners is too small to justify the

cost of creating an ITS. To illustrate these arguments concretely, we have implemented a hybrid

ITS for a component of the undergraduate Computer Science curriculum: the construction of

DFA (deterministic finite automata).

Keywords: ITS, scaffolding, semantic feedback, deterministic finite automata (DFA), JFLAP.

1. Introduction and Related Work

Intelligent Tutoring Systems (ITS) typically observe students executing selected tasks, compare their

performance against a “gold standard”, and provide them with personalized feedback that “brings their

performance closer to the gold standard” (VanLehn, 2015). The intelligence of an ITS lies in its ability

to meaningfully compare learners’ attempts against the gold standard and to provide feedback that helps

learners make adjustments. Effective ITS are the outcome of expensive research efforts, and have been

developed for domains such as mathematics (Koedinger et al., 1997; Arroyo et al., 2004; Ritter et al.,

2007), SQL (Mitrovic, 1998), and physics (Gertner and VanLehn, 2000), where large student numbers

justify these costs. In this paper, we consider a relatively esoteric domain in the Computer Science

undergraduate curriculum (ACM/IEEECS, 2013): the construction of deterministic finite automata

(DFA). In this paper, we demonstrate a low-cost hybrid ITS that “amplifies” the skills of instructors

(Toyama, 2010) by identifying two specific tasks for faculty/teaching assistants to perform: (1) provide

scaffolding (defined by Chi et al. (2001) as “cooperative execution or coordination by the tutor and the

student […] in a way that allows the student to take an increasingly larger burden in performing the

skill”; and (2) provide semantic feedback (Le, 2016).

For DFA construction problems, JFLAP (Rodger and Finley, 2006) provides syntax feedback

and indicates whether the DFA accepts or rejects given inputs. D’Antoni et al. (2015) have investigated

the efficacy of automatically generated semantic feedback, and their findings are promising: learners

report that these hints are useful, and providing hints lowers task completion times. However, learners

occasionally find these hints “confusing” and cannot translate them into specific corrective actions.

2. Specific roles of human instructors in a hybrid ITS

We illustrate key roles that human instructors can play in helping learners construct DFA using two

examples that were posed to a set of 70 undergraduates. Let P1 be the problem: Construct a DFA

accepting binary strings with an even number of 1’s, whose integer value is divisible by 3. Let P2 be the

problem: Construct a DFA accepting binary strings where every 1 is followed by two consecutive 0’s.

Role 1: Provide scaffolding. Several learners were unable to recognize that the condition in P1 is the
conjunction of two simpler properties: “binary strings with an even number of 1’s” and “binary strings

whose integer value is divisible by 3”. (Poor language skills could contribute to this struggle.) In our

hybrid ITS, the problem is represented internally using a functional representation (Shenoy et al., 2016)

as shown in Figure 1. In this tree representation, each internal node is a function representing a property,

9966

mailto:viraj.kumar@pes.edu

e decomposition exists, and a human instructor must provide the necessary scaffol

and leaves are either constants or the input string x. In this case, the two sub-problems correspond to the
left and right sub-trees below the root node. For such problems, our system can provide automatic

scaffolding by splitting the problem into two reasonable sub-problems. For a problem such as P2, no
such reasonabl ding.

and

num

x “1” intVal

x

Figure 1. A functional representation of problem P1.

Role 2: Provide semantic feedback. Some learners found the expression “every 1 is followed by two

consecutive 0’s” in P2 ambiguous. When probed, a few stated that they were unsure whether every 1
was immediately or eventually followed by two consecutive zeroes. Others were uncertain whether each

1 was followed by at least or exactly two zeroes. Clearly, the question is ambiguous and it should have

been phrased better. However, bearing in mind that this investigation was conducted in a linguistically

diverse country where neither learners nor instructors are necessarily fluent in English (which, in any

case, can be ambiguous), there is always potential for such confusion to arise. Learners with poor

English skills may be embarrassed to seek help if they assume that the question is unambiguous, and

they may blame themselves for failing to parse it accurately.

In our hybrid ITS, learners can seek automated answers to queries of the form: “Should the

DFA accept the string x?”, where x is specified by the learner. For P2, learners could resolve these
ambiguities by testing the strings 1100 (the first 1 is eventually but not immediately followed by 00) and

1000 (the 1 is followed by at least but not exactly two 0’s). Learners can state that they disagree with (or

don’t understand) answers to certain queries, and these are flagged for (human) responses, which are

necessarily delayed but can still be useful. Our hybrid ITS helps instructors in formulating responses as

follows: if a query string x is not accepted by the DFA, we identify the problem that is syntactically

closest (Alur et al., 2013) to the given question for which x is accepted, and suggest this problem as a

potential misunderstanding to the instructor. (Such feedback can also be given to the learner.) If the

question is truly ambiguous, the instructor should naturally issue appropriate clarifications. Otherwise,

instructors may need to engage learners in dialog to help them interpret the results accurately.

Our system also allows learners to ask the question “Is my DFA correct?” and receive two types
of automated replies. D’Antoni et al. (2015) suggest that some learners prefer replies in the form of

counter-examples (which are perhaps easy to translate into corrective action), whereas others prefer

more sophisticated textual hints. Our hybrid ITS only uses counter-examples at present. These can be of

two types: strings that the solution DFA accepts but the learner DFA does not, and strings that the

solution DFA does not accept but the learner DFA does. We generate shortest possible counter-

examples of both types, if possible. Once again, it may be necessary for human instructors to help

learners interpret such responses. For instance, one learner constructed a DFA for P2 that rejected the

empty string, and hence received this string as a counter-example. The empty string satisfies P2’s
condition vacuously, and the learner needed help in understanding this subtle point.

Following D’Antoni et al. (2015), we also automatically find the smallest edit set of changes

that will transform the learner’s DFA into a DFA that is equivalent to the solution. If a learner requests

additional help, one of these corrective steps is reported. In the first request for feedback, we withhold

some details. For the example shown in Figure 2 (left), we merely state that “a state” needs to be made

a rejecting state. Only if additional feedback is requested do we identify this target state as q2. If a
learner asks for further feedback, a request is sent to instructors accompanied by data capturing the

learner’s prior interaction with the system for this task. This is presented to instructors as a timeline

(Figure 2, right) and provides context for the learner’s request for help. The y-axis represents the edit

9977

nd trace the evolution of the learner’s solution, which may suggest specific feedback that will be

to the learner. Our system logs all such feedback and can provide it automatically if a different

r confronts the same problem. (We can detect this occurrence because the two learner DFAs will

ivalent to each other.) Thus, our hybrid ITS amplifies human effort by recycling it.

D
is

ta
n

ce
 t

o
 s

o
lu

ti
o

n

distance to the solution (if known). Each feedback request by the learner is represented as a clickable

dot on this graph (a red dot indicates a request for manual feedback). Instructors can click on individual

dots a

useful

learne

be equ

4

3

2

1

0

0 1 2 3 4 5 6 7 8

Time (minutes)

Figure 2. (Left) A screenshot of our hybrid ITS, implemented as a JFLAP extension. Auto-

generated and instructor assistance appears in the scrollable pane to the right of the drawing

area. (Right) A learner’s timeline for the problem P1.

3. Conclusions

Our hybrid ITS uses existing techniques to provide learners with automated assistance as a “first line of

defense”, and also gives instructors automated suggestions and visualizations that can help identify why

the learner is struggling. Our system can recycle manual feedback in limited instances, and we are

exploring ways to enhance its capabilities. This hybrid ITS will be evaluated in the upcoming semester.

References

ACM/IEEECS (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree

Programs in Computer Science, Joint Task Force on Computing Curricula, Association for Computing

Machinery (ACM) and IEEE Computer Society, ACM, New York, NY, 2013.

Alur, R., D'Antoni, L., Gulwani, S., Kini, D. and Viswanathan, M. (2013). Automated Grading of DFA

Constructions, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, 1976-1982.

Arroyo, I., Beal, C., Murray, T., Walles, R., and Woolf, B. P. (2004). Web-based intelligent multimedia tutoring

for high stakes achievement tests. In International Conference on Intelligent Tutoring Systems, 468–477.

Chi, M. T. H., Siler, S., Jeong, H., Yamauchi, T., and Hausmann, R. G. (2001). Learning from human tutoring.

Cognitive Science, 25, 471–533.

D'Antoni, L., Kini, D., Alur, R., Gulwani, S., Viswanathan, M. and Hartmann, B. (2015). How Can Automatic

Feedback Help Students Construct Automata? ACM Transactions on Computer-Human Interaction, 22(2).

Gertner, A. S., and VanLehn, K. (2000). Andes: A coached problem solving environment for physics. In

International conference on intelligent tutoring systems, 133–142.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A. (1997). Intelligent tutoring goes to school in

the big city. International Journal of Artificial Intelligence in Education, 8(1), 30–43.

Le, Nguyen-Thinh (2016). A Classification of Adaptive Feedback in Educational Systems for Programming.

Systems, 4(2), 22.

Mitrovic, A. (1998). A knowledge-based teaching system for SQL. In Proc. of ED-MEDIA, vol. 98, 1027–1032.
Ritter, S., Anderson, J. R., Koedinger, K. R., and Corbett, A. (2007). Cognitive Tutor: Applied research in

mathematics education. Psychonomic bulletin & review, 14(2), 249-255.

Rodger, S. H. and Finley, T. W. (2006). JFLAP – An Interactive Formal Languages and Automata Package, Jones

and Bartlett, Sudbury, MA, 2006.

Shenoy, V., Aparanji, U., K., Sripradha and Kumar, V. (2016). Generating DFA Construction Problems

Automatically, Proc. of the 4th Intl. Conf. on Learning and Teaching in Computing and Engineering, 32-37.

Toyama, K. (2010). Can technology end poverty? Boston Review, 36(5), 12-18, 28-29, www.bostonreview.net/

forum/can-technology-end-poverty.

VanLehn, K. (2015). Regulative Loops, Step Loops and Task Loops. International Journal of Artificial

Intelligence in Education, 26, 107–112.

9988

http://www.bostonreview.net/

