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Abstract: Intelligent Tutoring Systems (ITS) that match or exceed human tutoring are often the 

product of expensive research efforts in specific domains, and the lack of high-quality ITS in 

other domains is partly explained by this high creation cost. In this paper, we propose a hybrid 

ITS, where human instructors perform two critical tasks within an otherwise automated system: 

(1) giving learners specific types of feedback, and (2) scaffolding students’ reasoning. We argue 

that such a hybrid ITS can be cost-effective when the pool of learners is too small to justify the 

cost of creating an ITS. To illustrate these arguments concretely, we have implemented a hybrid 

ITS for a component of the undergraduate Computer Science curriculum: the construction of 

DFA (deterministic finite automata). 
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1. Introduction and Related Work 
 

Intelligent Tutoring Systems (ITS) typically observe students executing selected tasks, compare their 

performance against a “gold standard”, and provide them with personalized feedback that “brings their 

performance closer to the gold standard” (VanLehn, 2015). The intelligence of an ITS lies in its ability 

to meaningfully compare learners’ attempts against the gold standard and to provide feedback that helps 

learners make adjustments. Effective ITS are the outcome of expensive research efforts, and have been 

developed for domains such as mathematics (Koedinger et al., 1997; Arroyo et al., 2004; Ritter et al., 

2007), SQL (Mitrovic, 1998), and physics (Gertner and VanLehn, 2000), where large student numbers 

justify these costs. In this paper, we consider a relatively esoteric domain in the Computer Science 

undergraduate curriculum (ACM/IEEECS, 2013): the construction of deterministic finite automata 

(DFA). In this paper, we demonstrate a low-cost hybrid ITS that “amplifies” the skills of instructors 

(Toyama, 2010) by identifying two specific tasks for faculty/teaching assistants to perform: (1) provide 

scaffolding (defined by Chi et al. (2001) as “cooperative execution or coordination by the tutor and the 

student […] in a way that allows the student to take an increasingly larger burden in performing the 

skill”; and (2) provide semantic feedback (Le, 2016). 

For DFA construction problems, JFLAP (Rodger and Finley, 2006) provides syntax feedback 

and indicates whether the DFA accepts or rejects given inputs. D’Antoni et al. (2015) have investigated 

the efficacy of automatically generated semantic feedback, and their findings are promising: learners 

report that these hints are useful, and providing hints lowers task completion times. However, learners 

occasionally find these hints “confusing” and cannot translate them into specific corrective actions. 

 

2. Specific roles of human instructors in a hybrid ITS 

 
We illustrate key roles that human instructors can play in helping learners construct DFA using two 

examples that were posed to a set of 70 undergraduates. Let P1 be the problem: Construct a DFA 

accepting binary strings with an even number of 1’s, whose integer value is divisible by 3. Let P2 be the 

problem: Construct a DFA accepting binary strings where every 1 is followed by two consecutive 0’s. 

 

Role 1: Provide scaffolding. Several learners were unable to recognize that the condition in P1 is the 
conjunction of two simpler properties: “binary strings with an even number of 1’s” and “binary strings 

whose integer value is divisible by 3”. (Poor language skills could contribute to this struggle.) In our 

hybrid ITS, the problem is represented internally using a functional representation (Shenoy et al., 2016) 

as shown in Figure 1. In this tree representation, each internal node is a function representing a property, 
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e decomposition exists, and a human instructor must provide the necessary scaffol 

and leaves are either constants or the input string x. In this case, the two sub-problems correspond to the 
left and right sub-trees below the root node. For such problems, our system can provide automatic 

scaffolding by splitting the problem into two reasonable sub-problems. For a problem such as P2, no 
such reasonabl ding. 
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Figure 1. A functional representation of problem P1. 
 

Role 2: Provide semantic feedback. Some learners found the expression “every 1 is followed by two 

consecutive 0’s” in P2 ambiguous. When probed, a few stated that they were unsure whether every 1 
was immediately or eventually followed by two consecutive zeroes. Others were uncertain whether each 

1 was followed by at least or exactly two zeroes. Clearly, the question is ambiguous and it should have 

been phrased better. However, bearing in mind that this investigation was conducted in a linguistically 

diverse country where neither learners nor instructors are necessarily fluent in English (which, in any 

case, can be ambiguous), there is always potential for such confusion to arise. Learners with poor 

English skills may be embarrassed to seek help if they assume that the question is unambiguous, and 

they may blame themselves for failing to parse it accurately. 

In our hybrid ITS, learners can seek automated answers to queries of the form: “Should the 

DFA accept the string x?”, where x is specified by the learner. For P2, learners could resolve these 
ambiguities by testing the strings 1100 (the first 1 is eventually but not immediately followed by 00) and 

1000 (the 1 is followed by at least but not exactly two 0’s). Learners can state that they disagree with (or 

don’t understand) answers to certain queries, and these are flagged for (human) responses, which are 

necessarily delayed but can still be useful. Our hybrid ITS helps instructors in formulating responses as 

follows: if a query string x is not accepted by the DFA, we identify the problem that is syntactically 

closest (Alur et al., 2013) to the given question for which x is accepted, and suggest this problem as a 

potential misunderstanding to the instructor. (Such feedback can also be given to the learner.) If the 

question is truly ambiguous, the instructor should naturally issue appropriate clarifications. Otherwise, 

instructors may need to engage learners in dialog to help them interpret the results accurately. 

Our system also allows learners to ask the question “Is my DFA correct?” and receive two types 
of automated replies. D’Antoni et al. (2015) suggest that some learners prefer replies in the form of 

counter-examples (which are perhaps easy to translate into corrective action), whereas others prefer 

more sophisticated textual hints. Our hybrid ITS only uses counter-examples at present. These can be of 

two types: strings that the solution DFA accepts but the learner DFA does not, and strings that the 

solution DFA does not accept but the learner DFA does. We generate shortest possible counter- 

examples of both types, if possible. Once again, it may be necessary for human instructors to help 

learners interpret such responses. For instance, one learner constructed a DFA for P2 that rejected the 

empty string, and hence received this string as a counter-example. The empty string satisfies P2’s 
condition vacuously, and the learner needed help in understanding this subtle point. 

Following D’Antoni et al. (2015), we also automatically find the smallest edit set of changes 

that will transform the learner’s DFA into a DFA that is equivalent to the solution. If a learner requests 

additional help, one of these corrective steps is reported. In the first request for feedback, we withhold 

some details. For the example shown in Figure 2 (left), we merely state that “a state” needs to be made 

a rejecting state. Only if additional feedback is requested do we identify this target state as q2. If a 
learner asks for further feedback, a request is sent to instructors accompanied by data capturing the 

learner’s prior interaction with the system for this task. This is presented to instructors as a timeline 

(Figure 2, right) and provides context for the learner’s request for help. The y-axis represents the edit 
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nd trace the evolution of the learner’s solution, which may suggest specific feedback that will be 

to the learner. Our system logs all such feedback and can provide it automatically if a different 

r confronts the same problem. (We can detect this occurrence because the two learner DFAs will 

ivalent to each other.) Thus, our hybrid ITS amplifies human effort by recycling it. 
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distance to the solution (if known). Each feedback request by the learner is represented as a clickable 

dot on this graph (a red dot indicates a request for manual feedback). Instructors can click on individual 
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Figure 2. (Left) A screenshot of our hybrid ITS, implemented as a JFLAP extension. Auto- 

generated and instructor assistance appears in the scrollable pane to the right of the drawing 

area. (Right) A learner’s timeline for the problem P1. 

 

3. Conclusions 

 

Our hybrid ITS uses existing techniques to provide learners with automated assistance as a “first line of 

defense”, and also gives instructors automated suggestions and visualizations that can help identify why 

the learner is struggling. Our system can recycle manual feedback in limited instances, and we are 

exploring ways to enhance its capabilities. This hybrid ITS will be evaluated in the upcoming semester. 
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