
Chen, W. et al. (Eds.) (2016). Proceedings of the 24th International Conference on Computers in Education. 

India: Asia-Pacific Society for Computers in Education 
 

 

 

GUI Based Environment to Support Writing 

and Debugging Rules for a Program 

Visualization Tool 

Daiki TEZUKA a*, Satoru KOGURE b, Yasuhiro NOGUCHIb, Koichi YAMASHITAc 

Tatsuhiro KONISHI b & Yukihiro ITOHd
 

aGraduate School of Integrated Science and Technology, Shizuoka University, Japan 
bFaculty of Informatics, Shizuoka University, Japan 

cFaculty of Business Administration, Tokoha University, Japan 
dShizuoka University, Japan 

*gs16027@s.inf.shizuoka.ac.jp 

 

Abstract: TEDViT is a program visualization tool that allows teachers to apply an intention of 

description (IOD). Using this tool, teachers write a rule set to apply IOD. However, it takes a 

relatively long time to write the rule set. In this paper, we measure the amount of time required 

to write rule sets by conventional interface. We determine the reasons why it takes long time 

and suggest solutions. Thus, we constructed a supporting system that has features 

corresponding to these solutions. Our experimental results show that the system reduces total 

writing and debugging time by 41%. 

 

Keywords: Program visualization tool, rule editor, GUI 

 

1. Introduction 
 

It is said that visualizing the behavior of programs is an effective way for novice programmers to 

understand algorithms. There are well-known program visualization tools such as Jeliot 3 (Moreno et al., 

2004), ANIMAL (Rößling et al., 2002), and TEDViT (Yamashita et al., 2015). In particular, TEDViT 

has distinctive features that allow teachers to apply intentions of description (IODs). The teacher writes 

T-Rule for applying IOD. A T-Rule can be classified roughly into three types: a creating rule, updating 

object and deleting object. Figure 1 shows an example of a T-Rule. For example, the teacher can 

connect two distinct objects, supply the objects with descriptions using balloon objects, and change the 

colors of the objects. In other words, the teacher can lay out the appearance of objects in a flexible 

manner. 

However, it is difficult for teachers to write T-Rule for TEDViT. Thus, we have developed a 

support system for writing and debugging a T-Rule set. This is aimed at reducing the burden on the 

teacher. Figure 2 shows the relationship between the system and TEDViT. In order to design the system, 

we observed problems that occurred when writing T-Rule sets, analyzed those problems, and proposed 

improvements to the system. We conducted an experiment and confirmed that our system can shorten 

the time required for writing T-Rule sets by approximately 41%. 

 

 
Figure 1. An example of a T-Rule. 

 

 

 

 

 

 

 

330033 

mailto:gs16027@s.inf.shizuoka.ac.jp
mailto:gs16027@s.inf.shizuoka.ac.jp


 

 
Figure 2. Relationship between the supporting system, TEDViT and a T-Rule set. 

 

2. System Design 

 

We examined problems that occur when writing T-Rule sets. First, we wrote nine T-Rule sets. These 

rules corresponded to nine algorithms such as binary search and quick sort. The total time for writing 

these rules was 18 h 47 min. Next, we discussed the problems that occur when writing T-Rules. We 

found nine problems and classified them into the three types: “Excess/shortage of information content”, 

“Being unable to operate objects in GUI” and “Other problems”. Finally, we drew up solutions to solve 

the problems and developed nine features corresponding to each problem. Due to limitations of space, 

we show only three features. 

 

Feature.1. Teachers often mistype the values of an object’s position because these values must be 

entered manually. We provide a feature in which the teacher can specify an object’s 

position by using mouse click. Then, the frequency of mistakes is reduced. When a 

teacher clicks Area 4 in Figure 3, the X/Y coordinates of a mouse click are converted to 

a grid format (e.g., “x1,” “y1”). This value is applied to a new T-Rule. Also, the teacher 

can change an object’s position by using drag-and-drop. 

Feature.2. Suppose that the teacher creates T-Rules in order to change a state of an object (e.g., 

color) at every branches under a selective statement. In such a situation, the teacher must 

create very similar T-Rules corresponding to each branch. The creating task can be 

supported by generating such T-Rules by our system. We provide a feature in which the 

support system specifies a statement number that corresponds to a branch destination, 

and generates T-Rules whose conditional property value is a number. For example, when 

a “5” statement jumps to 6 or 10, and a teacher enters “5” in a text area, the system adds 

T-Rules whose conditional property values are 6 or 10. 

Feature.3. It is difficult to notice T-Rules that contain errors until the teacher debugs the statements, 

even if those errors are simple. We provide the feature in which the support system 

highlights T-Rules containing syntax errors. Then, the teacher will easily notice the 

errors. 
 

 

 

Figure 3. A screenshot of our proposed environment. 
 

 

 

330044 



We developed the support system using C# language and .NET Framework, which is a software 

platform developed by Microsoft. A teacher can complete writing and debugging T-Rule sets with only 

this system. Figure 3 shows a screenshot of the system. 

 

3. Experimental Evaluation 
 

We gathered 8 subjects who have been experienced a teaching assistant of programming class. First, we 

instructed the subject to write a T-Rule set that behaves like a model T-Rule that we prepared. The 

model T-Rule is written such that it contains all types of objects that the teacher can use. We explained 

how to use the support system to each subject. These instructions took approximately 1 h. Then, the 

subjects start writing and debugging T-Rule sets. Themes for writing and debugging the T-Rule set are 

“Determining a maximum value” (Theme A) and “Linear search” (Theme B). Each subject wrote and 

debugged T-Rule sets for the different themes. 4 subjects wrote and debugged T-Rule sets for theme A 

with our system and for theme B without the system. The other 4 subjects are vice versa. 

Table 1 shows all subjects’ total time of writing and debugging T-Rule sets. The value in 

“Ratio” column shows that our supporting system reduces by 41% of total time. However, the number 

of subjects was limited. 

 

Table 1: Total time of writing and debugging a T-Rule set. 

 

 Theme A Theme B Total Ratio 

With system 1 h 55 min 2 h 54 min 4 h 49 min 
0.59 : 1 

Without System 4 h 07 min 4 h 02 min 8 h 09 min 

 

 

4. Conclusion 
 

In this paper, we developed a system to reduce the time spent on writing and debugging a T-Rule set. 

The results of our experiments suggest that the system can reduce that time. Also, we used a 

questionnaire to ask for the subjects’ impressions after using the system. According to subjects’ 

opinions in the questionnaire, the features of the system is effective. Going forward, we will improve 

the system based on the results of a questionnaire and teachers’ opinions. 

 

Acknowledgements 

 

This study was supported by Japanese Grant-in-Aid for Scientific Research (B) 24300282. 

 

References 
 

Moreno, N., Sutinen, M. E.. (2004). Visualizing programs with Jeliot 3. AVI 04: Proceedings of the Working 

Conference on Advanced Visual Interfaces, 373–376. 

Rößling, G., Freisleben, B. (2002). ANIMAL: A system for supporting multiple roles in algorithm animation. 

Journal of Visual Languages & Computing, 341–354. 

K. Yamashita, R. Fujioka, S. Kogure, Y. Noguchi, T. Konishi, Y. Itoh. (2015). Educational Practice of Algorithm 

using Learning Support System with Visualization of Program Behavior. Proceedings of the 23rd 

International Conference on Computers in Education, 632-640. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
330055 


