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Abstract: This paper combines Multi-Agent based simulatigthwausal modeling and
reasoning to help students learn about ecologrcaigsses. Eighth grade students who took
part in the study showed highly significant pretst test gains on learning domain content
and causal reasoning ability. Moreover, studentstsss in reasoning with a causal model
of the ecosystem was strongly correlated with hidggsrning gains. This work provides the
foundations for designing scaffolded multi-agenmudation-based intelligent learning
environments with modeling and reasoning toolsdip Istudents learn science topics.
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1. Introduction

Ecology has been perceived as a difficult subjestabse students have difficulty
understanding the concepts of population and ptipaldrequencies, organization in an
ecosystem, and the relationship between termsasistdividuals, populations, and species
[3]. This results in their using rote learning nwh and linear causal reasoning, which
makes it hard to reason about complex ecosystéms$dod webs [7].

Students’ understanding of complex ecological pees can be improved by using
simulations that allow them to explore and obseetils of dynamic processes in the real
world, which otherwise may not be readily discelails]. However, previous studies have
shown that students face a multitude of problenth wimulations linked to hypotheses
generation, setting up experiments, interpretingulis, and organizing them into the
underlying model [4]. Thus, adequate scaffoldingdseto be provided to promote learning.
Multiple representations provide scaffolding byoaling users to construct, interpret, and
switch between multiple perspectives of a domain [Multi-Agent Based Simulations
(MABMs) [8] provide multiple representations thrdugconcrete representations of
biological entities and abstract, aggregate reptasens such as graphs that capture global
temporal properties [1]. However, learning by limdithe multiple representations of a
MABM is not an easy task and requires appropriedéfslding.

In this work, we introduce causal maps [6], in emgtion with a MABM simulation to help
students conceptualize, model, and reason aboytlegracological processes. We believe
that causal reasoning is intuitive and helps stigddretter understand concepts like
interdependence and balance in an ecosystem. Whilgyle link in a causal map represents
a relation between two entities in an ecosystener(algvel relation), reasoning in
multiple-link chains of the causal map provideda@bgl view of the ecosystem dynamics
(aggregate-level relation). Scaffolds are requifed mapping between the agent and
aggregate level relations in a causal map, andirfking the causal map with the MABM
simulation. This paper describes a Netlogo-basedBM simulation environment and the
scaffolding mechanisms used to help students ledoout ecosystem concepts An
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intervention that included 20"§rade students, produced significant pre- to -mEstgains.
Successful causal map building also contributetieédearning of ecological concepts.

2. Background Review

Multiple external representations (MERs) complemt@® advantages of one another,
constrain interpretations, and provide a frameworkconstructing deeper understanding
and insight [1]. Perceptual variability helps bualdstractions about mathematical concepts
and increases the likelihood of knowledge tranfiferHowever, experiments designed to
study learners’ benefits from MERs produced miasiits[1]. This is because learners find
it difficult to integrate and coordinate represéioias, necessitating adequate scaffolding.
MABM simulation environments like NetLogo [8] witlmultiple representations provide
effective design scaffolds for teaching ecologyaapts, especially to novices. MABMs,
rather than describing relationships between ptaseof populations, require students to
primarily focus on individualsind their interactions [8], thereby engaging inefaiglevel
thinking” that is intuitive for novices. In conttasstudies show that non-MABM based
approaches to teach complex biological phenomewea im&t with limited success.

3. Methods
3.1 The simulation environment

A study was conducted with a NetLogo-based [8] MABMhulation of a Saguaran desert
ecosystem. The ecosystem is modeled as a closedement with five species: two plants
(ironwood trees andcacti), their fruits pods) andseeds, and three animalsdts, doves, and
hawks). Each species is characterized by sets of rdiat define its behavior and its
interactions with other species. The simulationvtes access to individual and population
e behaviors simultaneously, using

' = e | = a pictorial depiction of the
inter-species interactions in the
simulation window, and a set of
graphs displaying aggregate
populations at different points in
time for each species. Learners
manipulate a set of sliders to
. regulate the initial number of

each species, and they can start,
stop or regulate the speed of a
simulation run at any point.
Figure 1: The user interface of the Saguaran desegystem
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3.2 Learning and Research Goals

Our goal was to help students infer inter-specaéeionships in a desert ecosystem using a
MABM, and then use these relationships to buildasal model to reason about different
scenarios in the ecosystem. The six relationshipstwstudents needed to infer are: (1)
Doves eat seeds of the cacti, (2) Rats eat seeds of the cacti, (3) Rats eat pods of theironwood
trees, (4) Hawks prey on doves, (5) Hawks prey on rats, and (6)Doves help pollinate the
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seeds. Also, students were expected to learn aboutdef@ndence and balance in an
ecosystem, pollination, the food chain, and théomodf producers and consumers.

In previous work, we studied the effectiveness ofea of scaffolds to aid learning of

agent-level phenomena in ecological processeslif2his study, our goal was to refine the
scaffolds and extend students’ tasks to buildingl aeasoning with causal maps.

Specifically, the study sought to answer the folligvresearch questions: (1) Is the
simulation coupled with scaffolds and multiple regentations effective in bringing about
deep understanding of important ecological procs#eso, is it equally effective across

different achievement profiles?; (2) Does usingdhasal map representation to build the
ecosystem model and reason causally about it elpgie learning gains with respect to
important ecology concepts?

3.3 Setting and Study Design

We conducted a pullout study with 28 §raders (10 high and 10 low achievers) from an
ethnically diverse public middle school in the Smatstern United States. During the study,
two experimenters worked one-on-one with the sttedand guided them verbally as they
used the simulation. Students were periodicallyedgk explain their answers to elucidate
their incorrect conceptions and mechanistic reagpprocesses. Details of the interview
procedure are presented below. One of our studgunes is the standard pre-to-post test
gains to demonstrate the effectiveness of thevatgion.

Students worked one-on-one with an experimentetwor45 minute sessions. On Day 1,
students were asked to infer the underlying mogeldnducting guided experiments in the
simulation environment. The Day 1 intervention e components: (1htroduction —
the experimenter checked the students’ prior egped with simulations, and then
provided an introductory tutorial on how to manaube Ul of the simulation environment;
(2) Initial Ideas — students were asked to execute a few simulatios on their own, and
then explain what was happening to the entitiehénenvironment and why. These ideas
were collected before any guided scaffolding was/igied to help the students learn the
required relationships; (Zcaffolded learning — students were provided with appropriate
scaffolds to help them learn about the interactioetsveen entities in the ecosystem. At
times, this involved helping students recognizeoirect conceptions before additional
scaffolds were employed to guide them towards threect relations. Students often went
through multiple iterations of predicting simulatioutcomes, running the simulation and
explaining the results, and receiving scaffolditighey understood the relevant relations.
Once students learnt a relation, they were askedite it down to help them keep track of
their own progress and findings. These notes wistewsed on Day 2.

The different scaffolds used are as follow&t. Scaffolds for setting up a simulation run
through prompts for choosing initial population gaeters, regulating the speed of the
simulation, deciding how long to observe, and wlsiehof species to obsen&,. Scaffolds

for interpreting results of a simulation run by prompting to notice the plotted graphs,
relating them with the simulation window, and drawi conclusions about the
interrelatedness of the species involv&, Scaffolds for controlling variables and
planning the construction of the underlying model of the ssimulation by suggesting a
vary-one-pair-at-a-time approach to study relatigms between different pair of species
and keeping track of which pairs have been stuaiebwhat relationships have been found;
SA. Scaffolds through self-explanations and predictions by posing general and directed
gueries and asking the student to make predictibosit simulation result§p. Scaffolding

by creating cognitive conflict by reminding students about previous contradictingings

or statements made, or by making them re-run stioula with different parametersg.
Scaffolding to encourage self-monitoring by helping students keep traok their progress
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and previous findingsS7. Scaffolding by providing resources by providing detailed
information about concepts which students havedidhknowledge about.

On Day 2, student activities included: (@pdel building - students were introduced to the
causal modeling tool [6], and asked to convertrétations they had noted down on Day 1
into the causal map (Figure 2). Scaffolds includadinders to model all the relationships
they had noted, and capture the bidirectional eatirthe food chain relationships; (2)
Reasoning about ecosystem scenarios — Students used their model, to answer 3 questions
such as magine that a disease killed more than half the doves in the desert, how would this
affect the rest of the ecosystem?” Scaffolds provided during this phase includedlaipng

fond [+
Figure 2: Causal model of the desert ecosystem
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4.1 Effectiveness of the intervention in bringing about understanding of ecology concepts

Table 2: Paired t-test results and effect sizepfferand post test scores (n=20, df=19)

Pre

Post

Category (SD) | (5., | tstatstic | Sig (2-tailed) Effect size
(mayscz:(gre:IB) (822) (2045(; 8.5419 <0.0001 2.116
(max sS(S)re=4O) (613818) (248912(; 8.0214 <0.0001 1.714
(mgxA ;Jc?)fg_:Zl) (?ng) (155733 6.2414 <0.0001 1.771
(max score=64) | (885 | (@47 | 8879 | <00001 2182

Table 2 presents the results of paired t-testshernpte-to-post gains for all 3 categories
(multiple choice (MCQ), short answer (SQ), and eatsasoning (CAUSAL)) of questions.
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The total pre to post gains were highly
significant <0.0001) with high effect
sizes, as were the gains for the individual
categories of questions. Equally
important, both high and low achievers
gained significantly from the
intervention, as seen in Figure 3, with the
low achievers gaining at a slightly higher
rate, indicating that the intervention was
beneficial for both groups and helped to
narrow their gaps in scores.

Figure 3: Pre and post test scores for high andalcinevers respectively
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4.2 Effectiveness of causal modeling and reasoning using another representation

Students’ answers to the 3 questions asked on Dagre graded as a measure of their
causal reasoning abilities. Students received pdortidentifying the correct links and for
combining them correctly to generate the answebler'& lists the Pearson correlations
between the pre-post gains for each category ddtopuns and these causal model reasoning
scores. Since pre-post gains for some students lim@ted by the ceiling effect (they had
high pre-test scores and could not gain much anywag calculated normalized gains
(NGains) for each student. NGains were calculatediliding a student’s pre-post gain by
the maximum amount he/she could gain dependinh®pre-test scores.

Table 3: Correlations between normalized pre-post
gains and causal model reasoning scores

Pearson correlation|  Sig (2-tailed) W€ had_h_yp()theSized that creating
MCO NGain 711 0071 an explicit causal model would
SQ NGain 792 <0.0001 | scaffold students’ understanding of
CAUSAL NGain 712 0.0004 ecology concepts, and students who
TOTAL NGain 947 <0.0001 | could reason more effectively with

the causal map representation would gain a betggnstanding of the target concepts, thus
gaining more on the post-test. True to our hypashese see a highly significar<€0.0001)
positive correlationr(= 0.947) demonstrating the effectiveness of ushegdausal map
representation in conjunction with the multi-ageased simulation environment.

5. Conclusion

The intervention described in this paper examihedenefits of using a MABM simulation
in conjunction with a causal map representationa@hdr necessary scaffolds for gaining a
deep understanding of important ecology conceptar @nalysis reveals that the
intervention produced significant learning gainsrpre to post test for all students, and
that using multiple representations effectivelyfiatded this improvement. As next steps,
we envision designing an intelligent learning eamment with MABM simulations along
with other representations and the necessary $daffoovided by a virtual mentor agent.
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