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Abstract: This paper combines Multi-Agent based simulation with causal modeling and 
reasoning to help students learn about ecological processes. Eighth grade students who took 
part in the study showed highly significant pre to post test gains on learning domain content 
and causal reasoning ability. Moreover, students’ success in reasoning with a causal model 
of the ecosystem was strongly correlated with higher learning gains. This work provides the 
foundations for designing scaffolded multi-agent, simulation-based intelligent learning 
environments with modeling and reasoning tools to help students learn science topics. 
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1. Introduction 
 
Ecology has been perceived as a difficult subject because students have difficulty 
understanding the concepts of population and population frequencies, organization in an 
ecosystem, and the relationship between terms such as individuals, populations, and species 
[3]. This results in their using rote learning methods and linear causal reasoning, which 
makes it hard to reason about complex ecosystems like food webs [7]. 
Students’ understanding of complex ecological processes can be improved by using 
simulations that allow them to explore and observe details of dynamic processes in the real 
world, which otherwise may not be readily discernible [5]. However, previous studies have 
shown that students face a multitude of problems with simulations linked to hypotheses 
generation, setting up experiments, interpreting results, and organizing them into the 
underlying model [4]. Thus, adequate scaffolding needs to be provided to promote learning. 
Multiple representations provide scaffolding by allowing users to construct, interpret, and 
switch between multiple perspectives of a domain [1]. Multi-Agent Based Simulations 
(MABMs) [8] provide multiple representations through concrete representations of 
biological entities and abstract, aggregate representations such as graphs that capture global 
temporal properties [1]. However, learning by linking the multiple representations of a 
MABM is not an easy task and requires appropriate scaffolding. 
In this work, we introduce causal maps [6], in conjunction with a MABM simulation to help 
students conceptualize, model, and reason about complex ecological processes. We believe 
that causal reasoning is intuitive and helps students better understand concepts like 
interdependence and balance in an ecosystem. While a single link in a causal map represents 
a relation between two entities in an ecosystem (agent-level relation), reasoning in 
multiple-link chains of the causal map provides a global view of the ecosystem dynamics 
(aggregate-level relation). Scaffolds are required for mapping between the agent and 
aggregate level relations in a causal map, and for linking the causal map with the MABM 
simulation. This paper describes a Netlogo-based  MABM simulation environment and the 
scaffolding mechanisms used to help students learn about ecosystem concepts An 
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intervention that included 20 8th grade students, produced significant pre- to  post-test gains. 
Successful causal map building also contributed to the learning of ecological concepts.  
 
 
2. Background Review 
 
Multiple external representations (MERs) complement the advantages of one another, 
constrain interpretations, and provide a framework for constructing deeper understanding 
and insight [1]. Perceptual variability helps build abstractions about mathematical concepts 
and increases the likelihood of knowledge transfer [1]. However, experiments designed to 
study learners’ benefits from MERs produced mixed results[1]. This is because learners find 
it difficult to integrate and coordinate representations, necessitating adequate scaffolding. 
MABM simulation environments like NetLogo [8] with multiple representations provide 
effective design scaffolds for teaching ecology concepts, especially to novices. MABMs, 
rather than describing relationships between properties of populations, require students to 
primarily focus on individuals and their interactions [8], thereby engaging in “agent-level 
thinking” that is intuitive for novices. In contrast, studies show that non-MABM based 
approaches to teach complex biological phenomena have met with limited success.  
 
 
3. Methods 
 
3.1 The simulation environment  
 
A study was conducted with a NetLogo-based [8] MABM simulation of a Saguaran desert 
ecosystem. The ecosystem is modeled as a closed environment with five species: two plants 
(ironwood trees and cacti), their fruits (pods) and seeds, and three animals (rats, doves, and 
hawks). Each species is characterized by sets of rules that define its behavior and its 
interactions with other species. The simulation provides access to individual and population 

behaviors simultaneously, using 
a pictorial depiction of the 
inter-species interactions in the 
simulation window, and a set of 
graphs displaying aggregate 
populations at different points in 
time for each species. Learners 
manipulate a set of sliders to 
regulate the initial number of 
each species, and they can start, 
stop or regulate the speed of a 
simulation run at any point. 

Figure 1: The user interface of the Saguaran desert ecosystem 
 
3.2 Learning and Research Goals  
 
Our goal was to help students infer inter-species relationships in a desert ecosystem using a 
MABM, and then use these relationships to build a causal model to reason about different 
scenarios in the ecosystem. The six relationships which students needed to infer are: (1) 
Doves eat seeds of the cacti, (2) Rats eat seeds of the cacti, (3) Rats eat pods of the ironwood 
trees, (4) Hawks prey on doves, (5) Hawks prey on rats, and (6) Doves help pollinate the 
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seeds. Also, students were expected to learn about interdependence and balance in an 
ecosystem, pollination, the food chain, and the notion of producers and consumers.   
In previous work, we studied the effectiveness of a set of scaffolds to aid learning of 
agent-level phenomena in ecological processes [2].  In this study, our goal was to refine the 
scaffolds and extend students’ tasks to building and reasoning with causal maps. 
Specifically, the study sought to answer the following research questions: (1) Is the 
simulation coupled with scaffolds and multiple representations effective in bringing about 
deep understanding of important ecological processes? If so, is it equally effective across 
different achievement profiles?; (2) Does using the causal map representation to build the 
ecosystem model and reason causally about it help promote learning gains with respect to 
important ecology concepts? 
 
3.3 Setting and Study Design  
 
We conducted a pullout study with 20 8th graders (10 high and 10 low achievers) from an 
ethnically diverse public middle school in the Southeastern United States. During the study, 
two experimenters worked one-on-one with the students and guided them verbally as they 
used the simulation. Students were periodically asked to explain their answers to elucidate 
their incorrect conceptions and mechanistic reasoning processes. Details of the interview 
procedure are presented below. One of our study measures is the standard pre-to-post test 
gains to demonstrate the effectiveness of the intervention.  
Students worked one-on-one with an experimenter for two 45 minute sessions. On Day 1, 
students were asked to infer the underlying model by conducting guided experiments in the 
simulation environment. The Day 1 intervention had three components: (1) Introduction – 
the experimenter checked the students’ prior experience with simulations, and then 
provided an introductory tutorial on how to maneuver the UI of the simulation environment; 
(2) Initial Ideas – students were asked to execute a few simulation runs on their own, and 
then explain what was happening to the entities in the environment and why. These ideas 
were collected before any guided scaffolding was provided to help the students learn the 
required relationships; (3) Scaffolded learning – students were provided with appropriate 
scaffolds to help them learn about the interactions between entities in the ecosystem. At 
times, this involved helping students recognize incorrect conceptions before additional 
scaffolds were employed to guide them towards the correct relations. Students often went 
through multiple iterations of predicting simulation outcomes, running the simulation and 
explaining the results, and receiving scaffolding till they understood the relevant relations. 
Once students learnt a relation, they were asked to write it down to help them keep track of 
their own progress and findings. These notes were also used on Day 2.  
The different scaffolds used are as follows:  S1. Scaffolds for setting up a simulation run  
through prompts for choosing initial population parameters, regulating the speed of the 
simulation, deciding how long to observe, and which set of species to observe; S2. Scaffolds 
for interpreting results of a simulation run by prompting to notice the plotted graphs, 
relating them with the simulation window, and drawing conclusions about the 
interrelatedness of the species involved; S3. Scaffolds for controlling variables and 
planning the construction of the underlying model of the simulation by suggesting a 
vary-one-pair-at-a-time approach to study relationships between different pair of species 
and keeping track of which pairs have been studied and what relationships have been found; 
S4. Scaffolds through self-explanations and predictions by posing general and directed 
queries and asking the student to make predictions about simulation results; S5. Scaffolding 
by creating cognitive conflict by reminding students about previous contradictory findings 
or statements made, or by making them re-run simulations with different parameters; S6. 
Scaffolding to encourage self-monitoring by helping students keep track of their progress 
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and previous findings; S7. Scaffolding by providing resources by providing detailed 
information about concepts which students have limited knowledge about.  
On Day 2, student activities included: (1) Model building - students were introduced to the 
causal modeling tool [6], and  asked to convert the relations they had noted down on Day 1 
into the causal map (Figure 2). Scaffolds included reminders to model all the relationships 
they had noted, and capture the bidirectional nature of the food chain relationships; (2) 
Reasoning about ecosystem scenarios – Students used their model, to answer 3 questions, 
such as “Imagine that a disease killed more than half the doves in the desert, how would this 
affect the rest of the ecosystem?” Scaffolds provided during this phase included explaining 

how to reason in chains, and 
verifying the answers to the 
reasoning questions by running 
appropriate simulations. All 
the interviewer- student 
conversations, along with 
continuous videos of their 
on-screen actions and 
movements, were recorded 
using the Camtasia software.  

Figure 2: Causal model of the desert ecosystem 
 
 
4. Results 
 
4.1 Effectiveness of the intervention in bringing about understanding of ecology concepts  
 

Table 2: Paired t-test results and effect sizes for pre and post test scores (n=20, df=19) 

Category 
Pre 

(S.D.) 
Post 

(S.D.) 
t-statistic Sig (2-tailed) Effect size 

MCQ 
(max score=3) 

0.95 
(0.83) 

2.40 
(0.5) 

8.5419 <0.0001 2.116 

SQ 
(max score=40) 

18.6 
(6.10) 

28.10 
(4.92) 

8.0214 <0.0001 1.714 

CAUSAL 
(max score=21) 

6.30 
(4.38) 

15.35 
(5.75) 

6.2414 <0.0001 1.771 

TOTAL 
(max score=64) 

25.85 
(8.85) 

45.85 
(9.47) 

8.8379 <0.0001 2.182 

Table 2 presents the results of paired t-tests on the pre-to-post gains for all 3 categories 
(multiple choice (MCQ), short answer (SQ), and causal reasoning (CAUSAL)) of questions. 

The total pre to post gains were highly 
significant (p<0.0001) with high effect 
sizes, as were the gains for the individual 
categories of questions. Equally 
important, both high and low achievers 
gained significantly from the 
intervention, as seen in Figure 3, with the 
low achievers gaining at a slightly higher 
rate, indicating that the intervention was 
beneficial for both groups and helped to 
narrow their gaps in scores. 

Figure 3: Pre and post test scores for high and low achievers respectively 
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4.2 Effectiveness of causal modeling and reasoning using another representation 
 
Students’ answers to the 3 questions asked on Day 2 were graded as a measure of their 
causal reasoning abilities. Students received points for identifying the correct links and for 
combining them correctly to generate the answer. Table 3 lists the Pearson correlations 
between the pre-post gains for each category of questions and these causal model reasoning 
scores. Since pre-post gains for some students were limited by the ceiling effect (they had 
high pre-test scores and could not gain much anyway), we calculated normalized gains 
(NGains) for each student. NGains were calculated by dividing a student’s pre-post gain by 
the maximum amount he/she could gain depending on the pre-test scores. 
 
Table 3: Correlations between normalized pre-post  
gains and causal model reasoning scores 

We had hypothesized that creating 
an explicit causal model would 
scaffold students’ understanding of 
ecology concepts, and students who 
could reason more effectively with 

the causal map representation would gain a better understanding of the target concepts, thus 
gaining more on the post-test. True to our hypothesis, we see a highly significant (p<0.0001) 
positive correlation (r = 0.947) demonstrating the effectiveness of using the causal map 
representation in conjunction with the multi-agent based simulation environment. 
 
 
5. Conclusion 
 
The intervention described in this paper examined the benefits of using a MABM simulation 
in conjunction with a causal map representation and other necessary scaffolds for gaining a 
deep understanding of important ecology concepts. Our analysis reveals that the 
intervention produced significant learning gains from pre to post test for all students, and 
that using multiple representations effectively scaffolded this improvement. As next steps, 
we envision designing an intelligent learning environment with MABM simulations along 
with other representations and the necessary scaffolds provided by a virtual mentor agent. 
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 Pearson correlation Sig (2-tailed) 

MCQ NGain .411 0.071 
SQ NGain .792 <0.0001 

CAUSAL NGain .712 0.0004 
TOTAL NGain .947 <0.0001 
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