
Shih, JL. et al. (Eds.) (2023). Proceedings of the 31st International Conference on Computers in 
Education. Asia-Pacific Society for Computers in Education 

 

Examining Different Affective Factors in 
Learning with Virtual Reality 

 
Hsing-Ying TUa, Silvia Wen-Yu LEEa* & Ting-Yueh HSUa 

aGraduate Institute of Information and Computer Education, National Taiwan Normal 
University, Taiwan 

* swylee@ntnu.edu.tw 
 

Abstract: This study aims to examine how prior knowledge and affective factors of 
virtual reality environments predict science learning achievement through the 
mediation of learning engagement. Ninety-two sixth-grade students in Taiwan were 
recruited in this study. Data were analyzed through partial least squares structural 
equation modeling (PLS-SEM). The results showed that prior knowledge negatively 
predicted presence and control and active learning. Presence, control and active 
learning positively predicted learning engagement (behavioral engagement, cognitive 
engagement, emotional engagement). Cognitive fatigue was found to negatively 
predict emotional engagement and science learning achievement. Implications and 
suggestions for future research were addressed in the study. 
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1. Introduction 
 
In the modern education landscape, digital learning platforms and advanced technological 
tools have completely transformed the nature of learning. With the continuous evolution of 
instructional technology, virtual reality (VR) has become a part of innovative educational 
approaches, the sense of realism in the learning environment has continuously improved 
and offers students unprecedented levels of engagement and interaction. By exploring, 
manipulating, and experimenting within a virtual environment, learners can obtain immersive 
learning experiences (Radianti et al., 2020). 

In the VR learning environment, students not only have the ability to freely explore 
and experience in a VR environment but also have the freedom to control the pace and 
content of their learning. Previous research has shown that if students have a higher degree 
of control in learning, they also achieve better learning outcomes and satisfaction (Jang et 
al., 2017; Lee et al., 2010). Nevertheless, prolonged exposure to digital learning 
environments, especially when engaging in learning within virtual contexts, may lead to an 
overwhelming cognitive load, potentially negatively impacting learning outcomes (Parong & 
Mayer, 2018). Studies have also shown that users have reported experiencing cognitive 
fatigue after prolonged use (Cummings & Bailenson, 2016; Munafo et al., 2017). However, 
there is still a lack of research regarding the effect of cognitive fatigue and its relationship 
with other factors in the context of VR learning environments. 

Makransky and Petersen (2021) have developed the cognitive affective model of 
immersive learning (CAMIL) illustrating the relationships among VR affordances, affective 
and cognitive factors, and learning outcomes. Among the different research directions, it was 
suggested that future study can investigate the impact of external factors on personal traits 
or dispositions. Therefore, the research purpose of this study is to explore the effects of 
learners’ prior knowledge and other affective factors of VR environments on their learning 
engagement and learning outcomes in the VR learning environment. A model was 
developed describing the hypothesized relationship among the variables used in this study 
based on the literature mentioned above (see Figure 1). Prior knowledge is hypothesized to 
positively predict students’ affective factors of VR environments (Kim et al., 2021). Among 
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the affective factors, presence and control and active learning are hypothesized to be 
positively predict learning engagement and learning outcomes (Lee et al., 2010; 
Purarjomandlangrudi & Chen, 2020). On the contrary, cognitive fatigue is hypothesized to be 
negatively predict learning engagement and learning outcomes (Hwang et al., 2019).
Learning engagement is hypothesized to be positively predict learning outcomes (Liu et al., 
2022).

Figure 1. The hypothesized model regarding relationships among prior knowledge, affective 
factors of VR environments, learning engagement, and learning outcomes.

1.1 Affective Factors of VR environments

In the following, the effects of the affective factors in VR environments were discussed, 
including presence, cognitive fatigue, and control and active learning. 

1.1.1 Presence

Presence is the sense of being in one place, which is a psychological state or subjective 
perception in which even though part of or all of an individual’s current experience is 
generated by the system (Lee et al., 2010). In VR, presence acts as an affordance, leading 
to deeply immersive experiences (Makransky & Petersen, 2021).

Empirical research has highlighted the relationship between a user's prior knowledge 
and their sense of presence in virtual environments. For instance, participants with higher 
levels of prior knowledge related to the content of a virtual environment reported a deeper 
sense of immersion and spatial presence (Kim et al., 2021). Purarjomandlangrudi and Chen 
(2020) examined students' sense of presence in a virtual classroom and its subsequent 
influence on their engagement levels. The findings demonstrated that students who reported 
a heightened sense of presence were significantly more engaged in their learning tasks than 
those who felt detached. Studies have also shown that students who perceived a higher 
presence in the virtual environment might have higher learning outcomes (Lee et al., 2010). 
However, studies have also shown that higher immersion leads to higher cognitive load 
(Parong & Mayer, 2018). Researchers have also concluded that students in high-immersion 
VR environments would have a higher sense of presence but less learning (Makransky et 
al., 2019).

1.1.2 Cognitive fatigue

Cognitive fatigue, also known as mental fatigue, refers to the decline in cognitive 
performance and efficiency after prolonged periods of cognitive activity. It manifests as 
reduced attention, slower reaction times, and increased errors (Boksem et al., 2005).
Studies have shown that an increase of cognitive fatigue decreased cognitive control (Lorist 
et al., 2005) and high-level information processing (Tanaka et al., 2014). Researchers 
indicated that when the learning material required students’ cognitive effort in a limited 
amount of time might lead to increasing cognitive fatigue, thereby affecting performance 
(Hwang et al., 2019). 

1.1.3 Control and active learning

Control and active learning refer to leveraging VR technology could empower learners to 
actively engage with and shape their own learning experiences within a virtual environment 
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(Lee et al., 2010). Studies have shown that students with higher level of control and active 
learning might enhance their learning engagement, achievement, and retention of 
knowledge (Deslauriers et al., 2019; Freeman et al., 2014). Previous studies demonstrated 
that the level of control and active learning could lead to increased engagement, motivation, 
and learning outcomes among students (Makransky & Lilleholt, 2018). 
 
1.2 Learning engagement 
 
Learning engagement refers to the dynamic and multifaceted involvement of students in the 
learning process (Furrer & Skinner, 2003). Cognitive, emotional, and behavioral dimensions 
are typically regarded as being a part of learning engagement (Fredricks et al., 2004). 
Cognitive engagement refers to the mental effort, concentration, and active participation that 
students invest in learning tasks and academic activities. The observable actions and 
behaviors that students exhibit in the learning process, such as participation in classroom 
activities or putting effort in completing assignments, is referred to as behavioral 
engagement. Emotional engagement refers to the affective or emotional reaction of a 
student's involvement in learning, including different emotions, such as enjoyment or 
boredom. 

Previous studies discovered that engagement in school-related tasks, including 
cognitive and behavioral engagement, predicts academic achievement and educational 
attainment over time (Fredricks et al., 2004; Wang & Eccles, 2013). In the context of VR 
learning environment, students were found to demonstrated higher learning achievement 
and learning engagement ( ).  
 
2. Method 
 
2.1 The VR learning materials 
 
This learning material was designed by our research team for elementary school students 
between 5th to 6th grades to learn concepts related to water, including water in the 
atmosphere, the structure of plants, the lives of animals, and supplementary knowledge of 
science. With the guidance of a virtual agent and the visualization of microscopic objects and 
natural phenomena, students could learn water-related knowledge by exploring the VR 
learning material. 

The VR learning material consisted of five scenes, including pre-training and four 
different seasons. Students become familiar with the operation and have a preliminary 
understanding of the content of this learning material by interacting with content in the pre-
training scene. A self-evaluation system was also embedded in the VR learning material. 
After students finished learning science knowledge of each scene, there would be questions 
for them to practice. Students could check their learning status with immediate feedback and 
comments after they answered each question. 
 
2.2 Participants and procedure 
 
Data were collected from 92 6th-grade elementary students with ages between 11 to 12 in 
Taiwan. Among these students, there were 35 males (38%) and 57 females (62%). Before 
the experiment, students were acknowledged the purpose of the experiment and only the 
students who volunteered to participate were recruited. Students first completed a test of 
science prior knowledge to assess their prior knowledge of the water-related concepts 
before experiencing the VR learning activity for a maximum of 30 minutes. Subsequently, 
students were asked to complete a science post-test and post-survey to measure their 
presence, cognitive fatigue, control and active learning, and learning engagement. 
 
2.3 Instruments 
 

439



Four questionnaires were designed to measure students’ presence, cognitive fatigue, control 
and active learning, and learning engagement. A test of prior knowledge and a science 
learning achievement test were developed to test students’ understanding of the concepts 
related to water.  
 
2.3.1 Presence questionnaire 
 
Presence questionnaire, adopted from Schubert et al. (2001), consisted of spatial presence 
(four items), involvement (three items), and experienced realness (one item). Spatial 
presence, defined as the perception that the user’s body is actually located in the virtual 
space, includes items such as “I felt present in the virtual space.” The items in involvement 
measured how much attention the VR learning activity draws to the user, and how much the 
user still pays attention to the real world, sample item includes “I concentrated only on the 
virtual space.” Experienced realness was defined as the realness the user felt between VR 
learning activity and reality, including items such as “My experience in the virtual 
environment is the same as my experience in the real world.” Participants responded on a 
Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). 
 
2.3.2 Cognitive fatigue scale 
 
Cognitive fatigue was defined as decreased cognitive resources and cognitive function over 
time due to sustained cognitive demands (Trejo et al., 2005). Cognitive fatigue scale, 
adapted from Hwang et al. (2019), consisted of four items in this study, and the sample item 
includes “My concentration would disappear very quickly when I experienced the VR 
learning activity.” Participants responded on a Likert scale ranging from 1 (strongly disagree) 
to 5 (strongly agree). Past study has reported good reliability of the scale ( 0.94) (Hwang 
et al., 2019). 
 
2.3.3 Control and active learning scale 
 
Control and active learning was defined as the level of autonomy learners were allowed in 
the learning environment (Lee et al., 2022). Control and active learning scale, adopted from 
Lee et al. (2022), consisted of five items. Participants responded on a Likert scale ranging 
from 1 (strongly disagree) to 5 (strongly agree). Sample item of the scale includes “This type 
of VR learning activity allows me to have more control over my own learning.” Past study has 
reported good reliability of the scale ( ) (Lee et al., 2010). 
 
2.3.4 Learning engagement scale 
 
Learning engagement scale, adopted from Lee et al. (2021), comprises three sub-
scales: behavioral engagement (five items), cognitive engagement (four items), and 
emotional engagement (four items). Although the original scale encompassed social 
engagement, the sub-scale was not included since there was no peer interaction in this 
study. Behavioral engagement, defined as the behavior related to academic achievement, 
includes items such as “I keep trying even if the learning activity is hard.” Cognitive 
engagement was defined as the effort, including meta-cognition and self-regulation, to 
understand learning content. A sample item of cognitive engagement includes “I think about 
different ways to solve a problem.” Emotional engagement was defined as the emotional 
responses to learning activities, including interest, enjoyment, and perceived value of 
learning. Sample item of emotional engagement includes “I feel good when I am doing this 
learning activity.” Participants responded on a Likert scale ranging from 1 (strongly disagree) 
to 5 (strongly agree). Past study has reported good reliabilities of the factors (behavioral 

(Lee et al., 2021). 
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2.3.5 Science achievement test 
 
The multiple-choice assessments were designed based on the content in the VR learning 
material to evaluate students’ understanding of the concepts related to water, such as the 
different states of water, the formation of frost and fog, etc. The science prior knowledge test 
(8 items) and learning achievement test (13 items) were used to measure students’ prior 
knowledge and their learning outcomes after learning through the VR learning material.  
 
2.4 Data analysis 
 
In this study, partial least squares structural equation modeling (PLS-SEM) was used to 
analyze the data. PLS-SEM, considered to be the second generation of multivariate analysis 
for verifying a relationship between variables, is suitable for analyzing small sample sizes of 
data and does not need normal data distribution (Hair et al., 2021).  

In this study, presence was treated as a formative construct due to the independent 
contribution of the items, while other variables were considered as reflective constructs. In a 
reflective construct, the latent variable causes the observed indicators, which means that 
any change in the construct would result in changes in its indicators. On the contrary, the 
observed indicators cause or form the latent variable is a formative construct, which means 
that the construct is determined by its indicators. Unlike reflective constructs, the indicators 
in formative construct do not necessarily have to be correlated, and they each contribute 
uniquely to the formative construct. PLS-SEM also has the advantage to contain both 
reflective and formative constructs in a model (Hair et al., 2021). 

The evaluation of PLS-SEM begins with the measurement model where each 
indicator's factor loading of reflective constructs should ideally surpass 0.7 for reliability. 
Additionally, the composite reliability (CR) of constructs should exceed 0.7, while their 
average variance extracted (AVE) should be above 0.5, ensuring convergent validity. For 
discriminant validity, the square root of a construct's AVE should be greater than its highest 
correlation with any other construct, with methods like the Fornell-Larcker criterion often 
used for further validation. The formative constructs were evaluated by assessing variance 
inflation factor values (VIF), and outer weights. 

Transitioning to the structural model, the coefficient of determination (R2) is 
scrutinized, where values above 0.75 indicate strong explanatory power. Path coefficients 
are crucial, with significance denoting impactful relationships among constructs. Effect sizes, 
represented as f2, should ideally exhibit values of 0.02, 0.15, or 0.35 for small, medium, or 
large effects, respectively. Predictive relevance, measured by Q2, becomes vital, with values 
greater than zero signifying model relevance.  
 
3. Results 
 
3.1 Measurement model 
 
The quality of the measurement model was examined by construct reliabilities and construct 
validities. The Cronbach’s alpha values and the composite reliability (CR) values were tested 
to verify the internal consistency of the indicators of each construct (Hair et al., 2021). As 
shown in Table 1, Cronbach’s alpha values of the constructs were between 0.86 to 0.98, 
which were above the suggested value of 0.70. Additionally, the CR values of the constructs 
were between 0.91 to 0.98, which also met the requirement of being greater than 0.70. 
These results show that the measurement model had sufficient reliability and the internal 
consistency of the indicators for each construct was good. 

Convergent validity and discriminant validity were assessed to verify whether the 
measurements effectively reflected the corresponding measured constructs. Factor loadings 
of indicators and the average variance extracted (AVE) of constructs were used to validate 
the convergent validity of the measurements. The factor loadings of the individual items and 
the AVE values of the constructs were all above 0.7, which is higher than the suggested 
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value (Hair et al., 2021). BEng 1 was deleted since the value of its factor loadings was below 
0.7. These results showed adequate convergent validity. 
 
Table 1. Confirmatory Factor Analyses and Reliabilities of Cognitive Fatigue, Control and 
Active Learning, and Learning Engagement. 

 Mean SD Factor 
loadings 

Cronbach’s 
alpha CR AVE 

Cognitive Fatigue (CF)    0.97 0.97 0.91 
CF 1 2.34 1.23 0.95    
CF 2 2.47 1.24 0.93    
CF 3 2.43 1.17 0.97    
CF 4 2.42 1.28 0.95    
Control and Active Learning (CAL)    0.98 0.98 0.91 
CAL 1 3.95 0.86 0.96    
CAL 2 3.90 0.87 0.95    
CAL 3 3.93 0.82 0.97    
CAL 4 3.88 0.87 0.95    
CAL 5 4.02 0.86 0.93    
Behavioral Engagement (BEng)    0.86 0.91 0.71 
BEng 2 3.84 0.86 0.82    
BEng 3 3.97 0.89 0.90    
BEng 4 3.85 0.94 0.90    
BEng 5 4.11 0.81 0.74    
Cognitive Engagement (CEng)    0.89 0.92 0.74 
CEng 1 4.02 0.85 0.88    
CEng 2 3.91 0.84 0.88    
CEng 3 3.91 0.87 0.81    
CEng 4 3.86 0.88 0.88    
Emotional Engagement (EEng)    0.90 0.93 0.78 
EEng 1 4.17 0.90 0.90    
EEng 2 3.76 0.97 0.81    
EEng 3 3.95 0.90 0.91    
EEng 4 4.20 0.86 0.90    

 
The Fornell-Larcker criterion and cross loadings were measured to verify discriminant 

validity, which indicates the degree to which each construct in the resulting model is distinct 
from the others (Hair et al., 2021). The cross loadings of measurement variables are 
suggested to be higher than the related latent variable. The square root of the AVE value of 
each variable should also be higher than 0.5 and larger than the Pearson’s correlation 
coefficient between the two variables. All cross loadings of the items were higher than each 
related latent variable. The AVE value of each variable (0.84 - 0.95) achieved the standard 
as well. In accordance with Hair et al. (2021), the results indicated that the discriminant 
validity of the variables was verified. 

In this study, presence was considered as formative construct. By using a global 
single item for redundancy analysis, the convergent validity of formative constructs was 
evaluated by examining its correlation with an alternative measure of the construct. The 
result of redundancy analysis for convergent validity of presence was 0.85, which was above 
the suggested value of 0.8. Variance inflation factor (VIF), outer weights, and outer loadings 
were assessed to verify the collinearity, significance, and relevance of formative items. The 
acceptable collinearity and adequate construct validity were signified by VIF values less than 
5, which indicated that an item's contribution to the primary latent construct was unique (Hair 
et al., 2021). The outer weight of an item determines its relative importance in formative 
constructs, and the outer loadings of an item determines its absolute importance to the 
construct (Hair et al., 2021). An item was kept in the measurement model if it had a 
significant outer weight (p < .05), or if its outer loadings was higher than 0.5. Items that did 
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not meet these criteria were further evaluated based on the significance of their outer 
loadings. An item was ultimately removed from the model if its outer loading was lower than 
0.5 and not significant.

3.2 Structural model

PLS-SEM was used to test the hypotheses proposed in this study, which included the 
relationships among prior knowledge, affective factors of VR environments (presence, 
cognitive fatigue, control and active learning), learning engagement (behavioral 
engagement, cognitive engagement, emotional engagement), and learning outcomes 
(science learning achievement). The paths with statistical significance (p < .05) are shown in 
Figure 2. The results indicated that prior knowledge negatively predicted presence ( -
0.24, p < .05), control and active learning ( -0.21, p < .05). Presence positively predicted 
behavioral engagement ( p < .001), cognitive engagement ( p < .001), and 
emotional engagement ( p < .001). Cognitive fatigue negatively predicted emotional 
engagement ( -0.22, p < .001) and science learning achievement ( -0.25, p < .05).
Control and active learning positively predicted behavioral engagement ( 1, p < .001), 
cognitive engagement ( 44, p < .001), and emotional engagement ( 44, p < .001).

Figure 2. Structural Model Results of Prior Knowledge, Affective Factors of VR 
Environments, Learning Engagement, and Learning Outcomes (only significant paths are 

3.3 Mediation

As shown in Table 2, control and active learning played significant mediating role between 
presence and learning engagement. Control and active learning mediated the relationship 
between presence and behavioral engagement ( -0.09, p < .05), cognitive engagement (

-0.09, p < .05), and emotional engagement ( -0.09, p < .05).

Table 2. Mediation Analyses Results of the Hypothesized Model (only significant paths are 
shown).
Path t p
Prior knowledge -0.09 2.02 .044*
Prior knowledge -0.09 1.99 .046*
Prior knowledge -0.09 2.09 .037*

*p
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4. Discussion 
 
According to the model analysis, it was found that science learning achievement was 
negatively predicted by cognitive fatigue. In other words, an increase in students’ cognitive 
fatigue decreased their learning performances. Additionally, cognitive fatigue was found to 
negatively predict emotional engagement, which referred to the increase of students’ 
cognitive fatigue would decrease their emotional response to learning activities. The 
information given in the learning material and the questions after exploring every scene, 
which required students’ sustained cognitive demands, might gradually increase their 
cognitive fatigue. Moreover, students had to finish the post-test assessment right after 
experiencing the learning material. Students might not find the learning activities interesting 
and not willing to engage in it due to the reasons mentioned above. It is suggested that 
researchers could divide experiment into several learning stages, and give students time to 
rest between these stages in order to reduce their perception of cognitive fatigue, improve 
their learning performance and willingness of engaging in the learning activities.  

On the contrary, learning engagement was found to be positively predicted by 
presence and control and active learning. These results showed similarities with the results 
of Purarjomandlangrudi and Chen (2020), which indicated that students with higher sense of 
presence might be more engaged in their learning activities than those who felt detached. 
However, the findings showed that students’ prior knowledge could negatively predict their 
sense of presence and control and active learning, which showed differences from the 
results shown in Kim et al. (2021). It is suggested future studies could deepen the 
exploration of the relationships between students’ prior knowledge and their sense of 
presence with different ages of students. 

Furthermore, control and active learning was found to mediate the relationships 
between prior knowledge and learning engagement. In other words, learners with lower prior 
knowledge might not only perceive higher level of autonomy over their learning, but also 
increase their interactions with the learning material. It is recommended that in the future, 
such learning materials be provided to students with lower prior knowledge, as they can 
potentially derive greater benefits.  

Finally, presence was treated as a formative construct in this study, while most of the 
studies treated presence as a reflective construct (e.g., Makransky et al., 2019). In future 
research, we suggest investigating presence as a formative construct, considering its 
potential to offer deeper insights into the dynamic interplay of its components. Additionally, 
contextual variations and qualitative inquiries could provide a comprehensive understanding 
of how learners experience presence in diverse educational settings, ultimately enriching the 
theoretical frameworks and pedagogical strategies. 
 
5. Conclusion 
 
A model was proposed in this study suggesting the relationships among prior knowledge, 
affective factors of VR environments (presence, cognitive fatigue, control and active 
learning), learning engagement (behavioral engagement, cognitive engagement, emotional 
engagement), and learning outcomes (science learning achievement). The effects of prior 
knowledge and cognitive fatigue were highlighted due to the differences from previous 
studies and the lack of empirical evidence. Finally, future studies are suggested to consider 
treating presence as a formative rather than a reflective construct. 
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