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Abstract: In this paper, we present a model development pipeline for dynamic Facial Expression 

Recognition (FER) aimed at quantifying learning in virtual classrooms. The proposed pipeline 
involves the use of partial labels for training dynamic FER models, followed by the use of a 
self-supervised federated learning approach in further enhancing the model's performance on 
new subjects, addressing both continual learning needs and privacy concerns. This work 
ultimately contributes to advancing learning quantification in virtual classrooms by integrating 
partial label training and federated learning strategies for dynamic FER. 
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1.  Introduction 
  

The assessment of student engagement consists of varied interactive 
components that can generally be divided into behavioral, affective and cognitive 
dimensions (Mandernach, 2015). In online learning environments, student 
engagement has typically been determined based on facial video recordings (Gupta 
et al., 2016; Dhall et al., 2020; Shen et al., 2022). Hence, dynamic facial expression 
recognition (FER) is an area of research that can be leveraged on for student 
engagement. 

Despite the extensive research on both static and dynamic FER (Li & Deng, 
2020), there still exists challenges that hinder the use of FER in applications. In 
general, FER suffers from subjective annotations and inherent similarity between 
emotion classes (Wang, Weijie & Sebe, Nicu & Lepri, Bruno., 2022). In addition, the 
variability in emotional expressions across subjects, as well as the lack of large 
dynamic FER datasets further enhances the difficulty of the task. 

However, this raises yet another significant challenge which is the case of 
privacy. As FER data typically contains participant’s faces, many would prefer not 
to have this data shared with others. A possible solution to this is the use of feature 
extraction methods to provide anonymity of training data. However, feature-
extraction based methods generally achieve worse results when compared to end-to-
end based methods (Tsalera et al., 2022). In order to overcome this issue, (Salman & 
Busso, 2022) developed a privacy preserving personalisation method for dynamic 
FER using federated learning. Their proposed method used a lightweight model that 
reduced the computation required for local training on an edge device. Furthermore, 
the use of federated learning allows for continual adaptation of the model without 
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comprising user privacy. The federated learning approach (Salman & Busso, 2022) 
allows for the local unsupervised training of a dynamic FER model, where local 
models are trained using pseudo labels generated by an image FER, and then used to 
update the central model via FedAvg. By combining this federated learning 
methodology with partial label learning, our work presents a generalized pipeline for 
developing a model which addresses the various challenges inherent to dynamic FER, 
which we evaluate on the CREMA-D dataset. 

 
2.  Related Work 

  
2.1  FER 

 
Based on the form of input data, the FER task can be further categorized as 

image facial expression recognition and video or dynamic facial expression 
recognition. In dealing with video FER, several approaches (Kahou, Michalski, 
Konda, Memisevic, & Pal, 2015; Lee, Choi, Kim, & Song, 2019; Lu et al., 2018) 
utilized convolutional neural networks architectures such as the VGG (Simonyan & 
Zisserman, 2014) or ResNet (He, Zhang, Ren, & Sun, 2016) to capture spatial 
features. These are then often paired with a Recurrent Neural Network (RNN) to 
handle the temporal features. The Long Short-Term Memory (LSTM) (Hochreiter & 
Schmidhuber, 1997) model is commonly used for this purpose. 

 
2.2  Federated Learning 

 
Federated learning is a decentralized approach for machine learning where 

the training process takes place across multiple client devices rather than in a 
centralized server (Zhang et al. 2021). In this setup, each client holds its own local 
dataset and computes updates to a local model. Instead of sending raw data to a 
central server, only the model updates (gradients) are communicated back and 
aggregated by a central entity known as the aggregator. This in turn preserves privacy 
as raw data is not shared.   

  
3.  Methodology 

  
3.1 Models 

 
Similarly to (Salman & Busso, 2022), the proposed pipeline relies on two 

models - an image facial expression recognition model (IFER) and a dynamic video 
facial expression recognition model (VFER), both of which share the same feature 
extractor. For our feature extractor and IFER, we leverage the pretrained EmoNet 
model from (Toisoul et al., 2021), due to being trained for image facial expression 
recognition on the large diversity of faces in the AffectNet dataset, as well as having 
a small size of 2M parameters, making it ideal for performing inference on edge 
devices. We extract the final classifier module of the EmoNet as our IFER, taking 
only the 6 relevant emotions in the CREMA-D dataset, and the rest of the EmoNet 
model is used as the shared feature extractor between the IFER and VFER. Both the 
feature extractor and IFER are kept frozen throughout our experiments. On the other 
hand, the VFER consists of an LSTM model that takes in the sequences of the 
extracted features from the EmoNet backbone before predicting the overall emotion 
of a video sequence. While the VFER is used for dynamic FER, the IFER is used to 
generate pseudo labels necessary for self-supervised federated learning, by averaging 
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the output of the IFER across every frame of the input video, and assigning the most 
probable class as the pseudo label if its maximum confidence, c passes the threshold 
of c=0.5. Otherwise, the sample is discarded and not used for training. 

 

 
Figure 1. Model architectures for VFER and IFER 

 
 3.2 Using probability distributions as labels 
 

Previous studies (Salman and Busso, 2022) have utilized the majority rule for 
allocating the final annotation to each clip. In this work, we improve upon the 
annotation scheme by using partial labels to reflect the relative probabilities of the 
annotations in the final label. As per (Wang, Weijie & Sebe, Nicu & Lepri, Bruno., 2022), 
modeling FER as a Partial Label Learning (PLL) task addresses subjective 
annotations and inherent similarities among various facial expressions. In our 
implementation, we convert the distribution of votes into a probability distribution 
using the softmax transformation. To ensure the emotions with zero votes correspond 
to a probability of zero, we first map every instance of zero votes to a large negative 
number before applying the softmax function. We then train our VFER on these 
probability distributions using the Kullback-Leibler Divergence loss (Kullback & 
Leibler, 1951). 

 
Formula for transforming vote distributions into target probability distribution: 

 
 

 
 

3.3 Federated Learning 
 
During the inference phase, we deploy separate copies of the VFER to 

multiple test subjects, which we refer to as the local model. In this phase, we first 
train the local VFER model for a given test subject by using a subset of the given 
subject’s videos. To simulate federated learning, we discard the associated labels and 
assign the local videos with pseudo labels generated by the IFER instead. The local 
VFER copies are each then trained on the respective subject’s newly labeled videos. 
Once all the local copies of the VFER models have been fine-tuned, FedAvg is used 
to aggregate the local copies into a single central model. Following this, the updated 
central model is evaluated on the unseen test set and the results are reported. 
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Figure 2. Federated learning framework for proposed dynamic facial expression 

recognition 
  
 

4.  Experimental evaluation 
  

4.1  Dataset split 
 

The dataset chosen is the CREMA-D dataset (Cao et al., 2014), which 
contains 7,442 audio-visual video clips from 91 actors spread across six emotion 
classes - happiness, sadness, neutral, anger, fear and disgust. Each clip has 4 to 12 
annotations with 95% of the clips having 8 or more annotations. We select labels 
produced solely based on visual data, aligning with our model’s exclusive use of 
video modality. This reduces noise from audio information unavailable to our model. 
To prevent data leakage and allow for an effective simulation of federated learning, 
we group video samples by actors before splitting the data into train, validation and 
test sets, ensuring that samples from the same actor only appear in one set. We also 
aim to keep the gender distribution in each set balanced. This results in a final split 
of 67 actors in our training set, 12 actors in our validation set, and 12 actors in our 
test set. For federated learning, the test set is split into 2 equal segments, with each 
segment containing half of the video samples of every actor. One segment will then 
be used as the adaptation set for federated learning, and the other is used as our test 
set for evaluating the adapted model. 

     
 

 4.2  Implementation 
 
For initial training of the VFER model, we use the Adam optimizer with a 

learning rate of 0.0001 for 20 epochs. On each epoch, the model is evaluated on our 
validation set to detect for overfitting. We then save the VFER weights on the epoch 
which achieves the lowest validation loss. For tuning the hyperparameters for 
federated learning, we evaluated the performance of local models on the validation 
set after each epoch. This led to the observation that locally trained models experience 
severe catastrophic forgetting (McCloskey & Cohen, 1989), immediately demonstrating 
deteriorating validation loss from the first epoch. As a result, we found the ideal 
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hyperparameters for local adaptation to be only a single epoch of training with a low 
learning rate of 0.00001. 

 
4.3  Results 

 
We present the comparison of results on our proposed implementation of 

partial label learning on the CREMA-D dataset in Table 1. As shown in Table 1, 
using partial labels for the training of our initial VFER resulted in an improved model 
across measures of average precision, recall and f1 score on the testing set. Among 
the 6 emotions, the model trained on the partial labels achieved a higher average score 
in classifying Neutral, Happiness, Fear and Anger while underperforming in the 
classifying of Sadness and Disgust, emotions which occur the least frequently in the 
CREMA-D dataset. 

 
Table 1: VFER trained using discrete vs partial labels 

Emotion Precision(%) Recall(%) F1_Score(%) 

Discrete Partial 
labels 

Discrete Partial 
labels 

Discrete Partial 
labels 

Neutral 72.3 65.2 74.5 75.2 73.4 69.8 

Happiness 81.6 88.9 94.1 94.1 87.4 91.4 

Sadness 37.5 32.8 38.9 38.9 38.2 35.6 

Fear 58.2 51.3 44.4 55.6 50.4 53.3 

Disgust 61.0 75.0 52.2 43.5 56.3 55.0 

Anger 49.4 62.9 54.7 52.0 51.9 56.9 

Micro-mean 63.0 64.7 63.4 63.6 62.9 63.3 

Macro-mean 60.0 62.7 59.8 59.9 59.6 60.4 

 
Table 2 presents the effect of federated learning on the model initially trained 

on partial labels. Our results demonstrate that federated learning further enhances the 
performance of the initial VFER trained on partial labels with improvements in 
average precision, recall and f1 score. 

 
Table 2: VFER Performance Before vs After Federated Learning 

Emotion Precision(%) Recall(%) F1_Score(%) 

Before After Before After Before After 

Neutral 65.2 67.1 75.2 77.4 69.8 71.9 

Happiness 88.9 89.9 94.1 94.1 91.4 92.0 

Sadness 32.8 35.7 38.9 37.0 35.6 36.4 
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Fear 51.3 52.0 55.6 54.2 53.3 53.0 

Disgust 75.0 75.5 43.5 53.6 55.0 62.7 

Anger 62.9 60.0 52.0 52.0 56.9 55.7 

Micro-mean 64.7 65.4 63.6 65.2 63.3 64.9 

Macro-mean 62.7 63.4 59.9 61.4 60.4 61.9 

 
  

5.  Conclusion 
  

In conclusion, our study introduces a training pipeline for dynamic Facial 
Expression Recognition (FER). We first verify the effectiveness of using a partial 
label learning paradigm to address subjective labels and intra-class similarities 
between facial expressions (Wang, Weijie & Sebe, Nicu & Lepri, Bruno., 2022) in the 
context of dynamic FER, demonstrating overall improvement in our initial dynamic 
FER model. Subsequently, to address the need for continual learning while 
preserving user privacy, we validate the use of a previously established federated 
learning technique (Salman & Busso, 2022), demonstrating even further 
improvements on our previously trained model's performance.  

Ultimately, by leveraging the methodologies of both partial label learning and 
self-supervised federated learning, we establish a formal model development pipeline 
and demonstrate its effectiveness in addressing the challenges inherent to FER, 
providing a promising technique for practical applications in the quantification of 
learning in virtual classrooms. 
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