
Ogata, H. et al. (Eds.) (2015). Proceedings of the 23rd International Conference on Computers in Education. 
China: Asia-Pacific Society for Computers in Education 

 

Building Open Student Model based on 
Assessment Framework of Iteration 

Programming 
 

Chih-Yueh CHOUad*, Chien-Tse WANGa, Zhi-Hong CHENbd, Shu-Fen TSENGcd, & Po-Yao 
CHAObd, 

aDepartment of Computer Engineering and Science, Yuan Ze University, Taiwan 
bDepartment of Information Communication, Yuan Ze University, Taiwan 

cDepartment of Information Management, Yuan Ze University, Taiwan 
dInnovation Center for Big Data and Digital Convergence, Yuan Ze University, Taiwan 

*cychou@saturn.yzu.edu.tw 
 

Abstract: Programming involves complex skills and knowledge. Novice students encounter 
many difficulties and lack information for reflecting and improving their proficiencies in 
programming skills and knowledge. This paper presents a work-in-progress research to design a 
system with an open student model based on an assessment framework of iteration 
programming. The assessment framework includes strategies of counter-controlled loop and 
sentinel-controlled loop, implementation skills of while, for, and do-while, and program tracing 
abilities. The system presents open student models to students in order to assist students in 
reflecting their proficiencies in iteration programming. 

 
Keywords: Open student model, computer assisted programming learning, Iteration 
programming 

 
 
1. Introduction 
 
Programming is a problem-solving activity, which involves many cognitive processes, such as 
analyzing problems and adopting problem-solving strategies and plans to design a program, 
implementing codes to generate the program, and testing, tracing, and debugging the program (Robin, 
Rountree, and Rountree, 2003). Students need many knowledge, strategies, models, and skills to 
complete these cognitive processes. Studies reveal that novice programmers encounter many 
difficulties and lack of many skills (Perkins, Hancock, Hobbs, Martin, and Simmons, 1986). For 
example, many novice programmers have poor tracing skills (Lister et al. 2004), fail to recognize 
strategies applied in example programs (Thompson, Whalley, Lister, and Simon, 2006), and seldom 
apply strategies and plans in their programs (de Raadt, Toleman, and Watson, 2007). Researchers 
suggested explicitly teaching and assessing strategies and plans (de Raadt, Watson, & Toleman, 2009; 
Soloway, 1986). However, few mechanisms assist students in reflecting their abilities of strategy 
planning, implementation, and program tracing. This study proposes a system with open student models 
based on an assessment framework to assist students in reflecting their proficiencies in iteration 
programming, including strategies, implementation, and program tracing. Iteration is a basic and vital 
component of programming to repeatedly execute a set of program codes. Iteration programming 
includes two main strategies of counter-controlled loop and sentinel-controlled loop and three 
implementation skills of while, for, and do-while. Open student models indicate that computer assisted 
learning system opens student models (system assessments of students’ knowledge) to students in order 
to promote reflection, self-assessment, and metacognition (Bull, 2004; Bull and Kay, 2013; Mitrovic 
and Martin; 2007). 
 
 
2. A System with Open Student Models on Iteration Programming 
 

106



The system contains an assessment framework of iteration programming and computer assisted 
assessment mechanisms to build student models, and interfaces of presenting open student models. 
 
2.1 Assessment Framework of Iteration Programming 
 
Table 1 lists an assessment framework of iteration programming, including strategies, implementation 
skills, and program tracing ability. Iteration programming consists of two main strategies: 
counter-controlled loop and sentinel-controlled loop (de Raadt, Watson, & Toleman, 2009; Soloway, 
1986). Counter-controlled loop repeats the loop specific times, which is determined by the counter 
variable. Sentinel-controlled loop repeats the loop until the sentinel value is inputted or is computed. 
Students’ proficient levels of strategies are assessed based on their performance of strategy applications 
and program tracing ability. Assessments of strategy application include program strategy 
classification, problem strategy classification, and programming in specific strategy. Program strategy 
classification assesses whether students correctly classify a program according to the applied strategy in 
the program. Problem strategy classification assesses whether students correctly classify a problem 
according to the appropriate strategy for solving the problem. Programming in specific strategy assesses 
whether students successfully write a program in a specific strategy. Program tracing ability of 
strategies assesses whether students correctly predict the output of a program in a specific strategy.  

Implementation skills of iteration programming include while, for, and do-while. Each iteration 
strategy could be implemented in while, for, or do-while. Application of implementation skills assesses 
whether students successfully write a problem in a specific implementation. Program tracing ability of 
implementation skills assesses whether students correctly predict the output of a program in a specific 
implementation. A question may involve multiple concepts or skills. For instance, a program output 
predication question of a program with counter-controlled loop and implemented in while involves 
program tracing abilities of counter-controlled loop and while implementation. 
 
Table 1: Assessment framework of iteration programming.  

 Application Program Tracing 
Strategies 
(counter-controlled loop,  

sentinel-controlled loop) 

Program strategy classification 
Problem strategy classification 
Programming in specific 

strategy 

Program output 
prediction 

Implementation skills 
(while, for, do-while) 

Programming in specific 
implementation 

Program output 
prediction 

 
 
2.2 Computer Assisted Assessment Mechanisms and Open Student Models 
 
Based on the assessment framework, the system supports computer assisted assessment mechanisms to 
build student models. The system enables teachers to design questions to assess student abilities. The 
system supports multiple-choice questions and fill-in-blank questions. Multiple-choice questions can be 
applied to program strategy classification and problem strategy classification. Fill-in-blank questions 
can be applied to program output predication. Multiple-choice question and fill-in-blank question can 
be graded by the system. In addition, teachers assign programming assignments to assess programming 
in specific strategy and specific implementation. The programming assignments are graded by teachers 
or teacher assistants. 

A question or a programming assignment may involve multiple concepts or skills. The system 
enables teachers to assign involved concepts or skills in each question and assignment and then the 
system builds a question concept relationship table. The system builds student models by assessing 
students’ proficient levels of each concept and skills based on the question concept relationship table 
and students’ answering records of questions and assignments (Hwang, 2003). The system provides 
open student models to present students’ assessed proficient levels of iteration programming abilities. 
Students can click at a specific concept or skill to inspect their answering records of related questions 
and assignments. It helps students reflect and improve their iteration programming abilities. 
 

107



3. Practical Applications and Future Works 
This section presents practical applications and future works of the open student models of iteration 
programing. 
(1) The open student models of iteration programming provide students with a framework for 

reflecting and improving their iteration programming abilities, including strategies, implementation 
skills, and program tracing ability. The open student models present system assessments of iteration 
programming abilities. It helps students reflect their weakness. In addition, the open student models 
present students’ records of question-answering and assignments related to specific iteration 
programming abilities. It indicates the types of questions and assignments for students to practice to 
improve specific iteration programming abilities.  

(2) Students can be asked to self-assess their proficient levels of programming abilities. The results of 
self-assessments and system assessments can be compared to develop negotiable open student 
models. Negotiable open student models promote better self-assessments (Chou et al. 2015). 

(3) Student proficiencies in strategies, implementation skills, and program tracing ability can be 
collected for analyzing students’ difficulties in learning iteration programming. The analysis can 
assist teachers in tutoring students and adjusting instruction and assist in developing adaptive 
tutoring mechanisms for helping students. 

(4) Open student models can be used for students to set their goals of improving iteration programming 
abilities and to trace their improvement. 

 
 
Acknowledgements 
 
The authors would like to thank the support of the Ministry of Science and Technology, Taiwan (MOST 
103-2511-S-155 -003)  
 
 
References 
 
Bull, S. (2004). Supporting Learning with Open Learner Models, Proceedings of 4th Hellenic Conference with 

International Participation: Information and Communication Technologies in Education, Athens, Greece. 
Keynote. 

Bull, S., & Kay, J. (2013). Open learner models as drivers for metacognitive processes. International Handbook of 
Metacognition and Learning Technologies (pp. 349-365). Springer New York. 

Chou, C. Y., Lai, K. R., Chao, P. Y., Lan, C. H., & Chen, T. H. (2015). Negotiation based adaptive learning 
sequences: Combining adaptivity and adaptability, Computers & Education, 88, pp.215-226. 

Hwang, G. J. (2003). A conceptual map model for developing intelligent tutoring systems. Computers & 
Education, 40(3), 217-235. 

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Mostr¨om, J. E., 
Sanders, K., Sepp¨al¨a, O., Simon, B. & Thomas. L. (2004) A multi-national study of reading and tracing 
skills in novice programmers. ACM SIGCSE Bulletin, vol. 36, no. 4, pp.119–150. 

Mitrovic, A., & Martin, B. (2007). Evaluating the effect of open student models on self-assessment. International 
Journal of Artificial Intelligence in Education, 17 (2), 121-144. 

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. & Simmons. R. (1986). Conditions of learning in novice 
programmers. Journal of Educational Computing Research. vol. 2, no. 1. pp. 37-55. 

de Raadt, M., Toleman, M., & Watson, R. (2007). Incorporating programming strategies explicitly into curricula. 
Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-Volume 88 (pp. 
41-52). Australian Computer Society, Inc. 

de Raadt, M., Watson, R., & Toleman, M. (2009). Teaching and assessing programming strategies explicitly. 
Proceedings of the Eleventh Australasian Conference on Computing Education-Volume 95 (pp. 45-54). 
Australian Computer Society, Inc. 

Robin, A., Rountree, J., and Rountree, N. (2003). Learning and teaching programming: A review and discussion, 
Computer Science Education, 13(2), 137-172. 

Soloway, E. (1986). Learning to Program = Learning to Construct Mechanisms and Explanations, 
Communications of the ACM, 29(9), 850–858. 

Thompson, E., Whalley, J., Lister, R. & Simon, B. (2006). Code classification as a learning and assessment 
exercise for novice programmers. Proceedings of the 19th Annual Conference of the National Advisory 
Committee on Computing Qualifications (NACCQ 2006), pp. 291–298. 

108


