
Hayashi, Y., et al. (Eds.) (2017). Workshop Proceedings of the 25th International Conference on Computers in
Education. New Zealand: Asia-Pacific Society for Computers in Education

438

Preliminary Study on Learning by
Constructing a Cognitive Model Based on

Problem-Solving Processes
Kazuaki KOJIMAa*, Kazuhisa MIWAb, Ryuichi NAKAIKEc, Nana KANZAKId,

Hitoshi TERAIe, Jun’ya MORITAf, Hitomi SAITOg, & Miki MATSUMUROb
aLearning Technology Laboratory, Teikyo University, Japan

bGraduate School of Information Science, Nagoya University, Japan
cDepartment of International Tourism, Heian Jogakuin Universiry, Japan

dCollege of Nagoya Women's University, Japan
eFaculty of Humanity-Oriented Science and Engineering, Kindai University, Japan

fFaculty of Informatics, Shizuoka University, Japan
gFaculty of Education, Aichi University of Education, Japan

*kojima@lt-lab.teikyo-u.ac.jp

Abstract: Construction of models is promising as a learning activity, and computational
environments are useful for that. However, it can be a heavy task for novice learners to
construct computational models because it requires considerable instruction and practice of
programming languages. We designed a basic framework for learning by experiencing
construction of models on a production system in the domain of cognitive science. In this
framework, a model abstractly describing human problem-solving processes and its computer
model implemented on the production system is prepared by an instructor in advance. A
learner is given the abstract model and processes of problem solving produced by executing
the implementation model, and then engaged in instantiating the abstract model into an
implementation model. This activity is expected to deepen learner understanding of mental
processes embedded in the abstract model. We preliminary studied the effect of learning a
model which simulates subtraction requiring regrouping in the framework. The results
confirm the possibility that such experience can improve learner understanding of mental
processes behind the model, and necessity to expand learning activities in the framework.

Keywords: Learning by construction, cognitive model, production system, problem solving

1. Introduction

Science in recent decades has used two approaches to understand the natures of targets: an analytical
approach through observation of targets, and a constructive approach through construction and
simulation of target models. For example, cognitive science research adopted empirical studies of
human behaviors and running computational models in understanding human mind (Schunn, Crowley
and Okada, 1998).

Models are essential to the production, dissemination, and acceptance of scientific knowledge
(Gilbert, 2004). As well as science research, science education uses models to have learners interpret
scientific knowledge. Besides the model use, construction and simulation of models by learners has
also been argued (Clement, 2000; Gilbert, 2004; Harrison, and Treagust, 1998). Model construction is
promising as a learning activity in understanding complex or invisible targets, and computational
environments are useful both for researchers and learners because they enable to instantly construct,
test, and evaluate models. However, it can be a heavy task for novice learners to construct
computational models because it requires considerable instruction and practice of programming
languages (Penner, 2000). Therefore, several studies addressed support for model construction by
learners (e.g., Basu, Dukeman, Kinnebrew, Biswas and Sengupta, 2014; Brady, Holbert, Soylu,
Novak, and Wilensky, 2015; Hirashima, Imai, Horiguchi and Toumoto, 2009). Support by the studies

439

allow learners to construct and simulate models by designing models abstractly describing the
attributes or behaviors of targets. Instantiation of the models into computer-executable models is left
to support systems. Here, the former models of abstract description of targets are referred to as
abstract models, and the latter as implementation models. These studies successfully alerted
misconceptions, produced conceptual changes, and deepened understanding in scientific phenomena
through designing abstract models.

Models on which computer simulations are based correspond to both instructionally
designed models and interfaces to guide learner model construction (Seel, and Blumschein,
2009). Thus, the support systems described above may be limited to targets which can be
represented as models of interaction among agents and objects. Mental processes in problem solving
by a person, for example, could not be properly modelled on an interface to arrange agents and
objects. Therefore, learning of human mental processes with computational models must require a
different approach.

We designed a basic framework for learning by model construction in the domain of cognitive
science (Kojima, Miwa, Nakaike, Kanzaki, Terai, Morita, Saito, and Matsumuro, 2016). In this
framework, a learner instantiates an abstract model initially given into an implementation model.
Basically, abstract models are critical in learning by construction because they are externalized
products in understanding of targets. On the other hand, implementation of models also plays a critical
role in deepening understanding as demonstrated in history of cognitive science. One of the central
keys in learning by construction is to receive feedback from actual or virtual worlds through
instantiation of abstract models into implementation models (Nakashima, 2008). Our framework is
intended to provide opportunities for learners to gain such benefits through model construction with
lower load. In this paper, we reported a preliminary study to confirm the effect of experience
construction of a cognitive model.

2. Support System for Learning by Constructing Cognitive Models

Figure 1 illustrates the framework for learning of human problem-solving processes by constructing
cognitive models. In this framework, a learner is given an abstract model of problem solving, and
processes of the problem solving produced by executing its implementation model. He or she is then
engaged in instantiating it into the implementation model by himself/herself according to the
processes. This activity allows to experience construction of a cognitive model with lower load, and is
expected to deepen learner understanding of mental processes embedded in the abstract model (e.g.,
sophisticating a mental model of learners about a phenomenon the abstract model represents).

Learner

Abstract model Implementation model processes

…

s0 s1 sn
- name: FindDifference
if:
- (Goal FindDifference)
- (Processing ?C)
- (Focus ?C)
- (Slot ?Nlower ?C ROWLOWER)
- (Slot ?Nupper ?C ROWUPPER)
- (*test-greater-or-equal ?Nupper ?Nlower)
then:
- (*delete (Goal FindDifference))
- (*deposit (Goal WriteAnswer))

- name: LeftCarry
if:

…

- name: FindDifference
if:
- (Goal FindDifference)
- (Processing ?C)
- (Focus ?C)
- (Slot ?Nlower ?C ROWLOWER)
- (Slot ?Nupper ?C ROWUPPER)
- (*test-greater-or-equal ?Nupper ?Nlower)
then:
- (*delete (Goal FindDifference))
- (*deposit (Goal WriteAnswer))

- name: LeftCarry
if:

…

Implementation model

instantiation

simulation
and evaluation

Figure 1. Framework for learning by constructing cognitive models

440

We implemented a support system for the framework, which adopts a production system as an
architecture of implementation models. Actually, it uses DoCoPro (Nakaike, Miwa, Morita and Terai,
2009), a production system designed for learning by constructing models by novice learners. Before
the system is given to learners, an instructor implements a cognitive model for an abstract model of
human problem-solving on DoCoPro. The system executes the model and extracts its problem-solving
processes. It then creates information indicating steps involved in the processes. This information
includes explanation of a production rule fired and two states in the working memory before/after the
rule firing for each step of the processes.

Figure 2 shows a screenshot of the support system. As the left side of the figure indicates, the
system provides information of each step in the problem-solving processes. For every step of the
processes, the learner composes a production rule which can change the before-state to the after-state
with the editor of the right side. The learner can check his/her rule on each step through comparison
between the after-state and the result from firing the rule. Construction of the implementation model
is completed through composition of rules for all steps. Although learners cannot experience design of
problem representation in this framework, it enables the learners who are not familiar with
programming to experience instantiation of an abstract model and receiving of feedback from the
instantiation.

Figure 2. Screenshot of support system

3. Preliminary Study of the Effect of Learning by Constructing a Cognitive Model

We empirically studied whether experience of model construction with the support system had the
learning effect. We used a model of subtraction requiring regrouping, which was used in a practice of
our previous study (Kanzaki, Miwa, Terai, Kojima, Nakaike, Morita, and Saito, 2015). Everyone can
easily solve problems of subtraction, but do it implicitly with procedural knowledge. Such problem
solving is suitable as a learning target because construction of its model requires deep understanding
of implicit mental processes automatically performed.

In the practice of previous study, undergraduates trained model construction on DoCoPro in a
90-minutes class, which was followed by three classes where they constructed a subtraction model
and a bug model producing incorrect answers because of bugs in rules. This model construction was
supported by a function visually representing states in the working memory.

3.1. Method

Eight undergraduates who had not experienced in training computer programming participated in this
study. Prior to the study, they learned model construction on DoCoPro with instructional contents

441

used in the previous study. In this study, they first responded to a pretest. This test asked the
participants to solve a subtraction problem 317 – 98,” describe general procedures to perform
subtraction, and infer what made incorrect answers to two problems “9008 – 3149 = 5959” and
“806303 – 182465 = 623938.” These answers occurred because the solver merely changed 0 into 9
when digits to borrow a number were 0. The first subtraction problem was not intended to test the
participants, but to bring procedures of regrouping to their attention before describing subtraction
procedures.

Second, the participants learned procedures to compose a model according to processes given
from the support system with instructional video. They then were given two sheet of paper which
described an abstract model of subtraction in a state-transition diagram, and explanation of predicates
used in implementing a model. After the instructions, they actually instantiated the abstract model into
an implementation model.

Finally, the participants responded to a posttest including the tasks to describe subtraction
procedures and infer bugs in the two problems, which were identical to those of the pretest. They were
then asked to report what they had learned in the instantiation of the model.

In the analysis of the subtraction-procedures task, we checked whether participants’
descriptions included information corresponding to ten rules comprising the implementation model.
For each rule, participants’ descriptions were categorized into present when including corresponding
information, incomplete when including corresponding information whose conditions and operations
were specialized or insufficient, or absent when including no relative information. The information of
the ten rules was as follows.

FindDifference1 If the minuend is equal to or greater than the subtrahend in the digit to perform

subtraction (processing digit) (then move to WriteAnswer)

WriteAnswer Write the difference between the minuend and subtrahend

ShiftColumn Shift the processing digit to the left column

Completed Finish when the difference in the far-left column is written

FindDifference2 If the minuend is smaller than the subtrahend in the processing digit (then move to

LeftCarry)

LeftCarry Shift the digit to borrow 1 (focus digit) to the left column

GetCarry1 If the minuend in the focus digit is not zero, then subtract 1 from it and shift the focus

digit to the right

PutCarry1 Add 10 to the focus digit (and then move to FindDifference)

GetCarry2 If the minuend in the focus digit is zero (then move to LeftCarry)

PutCarry2 Add 10 to the focus digit (and then move to GetCarry)

For example of PutCarry2, descriptions such as “add 10 to the one’s place” and “add 10 to the
right digit” were categorized incomplete because some subtraction problems are not correctly solved
with these operations.

Because the bug inference task was used in the previous study mentioned above, we
scored the participants’ responses in the same way: two points if the bug causing the incorrect
answers to the two problems was appropriately described, one point if factors causing the two
incorrect answers were described with a single consistent rule but not appropriate, and zero
point if only the phenomena were described or factors were described with two different
rules.

442

3.2. Results

All of the participants successfully instantiated the implementation model on the support system. The
average time it took them to finish the tests and model construction was about 60 minutes.

The participants successfully solved the subtraction problem in the pre-test. Figure 3 indicates
the categories for each rule in the subtraction procedures task in the pre- and posttests. The
participants’ descriptions in the pretest included much incomplete information or no information
about the lower five rules. These rules are corresponding to procedures to borrow a number in
regrouping. Descriptions including such information increased, on the other hand, in the posttest.

The average score of the bug inference task was 0.88 in the pre-test, and 1.13 in the post-test.
Actually, only two of the eight participants scored higher in the post-test than in the pre-test.

0 20 40 60 80 100

FindDifference1

WriteAnswer

ShiftColumn

Completed

FindDifference2

LeftCarry

GetCarry1

PutCarry1

GetCarry2

PutCarry2

0 20 40 60 80 100

FindDifference1

WriteAnswer

ShiftColumn

Completed

FindDifference2

LeftCarry

GetCarry1

PutCarry1

GetCarry2

PutCarry2

Proportions of participants (%)

pre-test post-test

present

incomplete

absent

Figure 3. Categories for each rule in the subtraction procedures task

3.3. Discussion

Figure 3 revealed that the participants’ descriptions about subtraction procedures were improved
through experience of instantiation into the implementation model on the support system. In the
pretest, their descriptions omitted much information about regrouping procedures. Although they
could easily perform subtraction procedures, they could not exactly explain them. The information
was expanded in the posttest. In the posttest, five out of the eight participants reported findings about
their implicit, automatized mental processes, such as “the process was complex than I had expected,
although I perform subtraction in everyday life” and “I found I usually omit some steps when I
explain procedures of subtraction to someone.” Those facts confirm the possibility that support
system improved their understanding of mental processes behind the model they learned. On the other
hand, information about some procedures did not change such as FindDifference 1 and Completed.
They are conditions to perform subtraction in a column and finish entire subtraction. Perhaps that was
because of the difficulty in externalizing automatized mental processes. And this difficulty had not
been overcome thoroughly.

The scores in the bug inference task did not changed in the pre- and posttests. Because the
participants did not experience construction of any bug model, performance in this task to infer
thinking processes by other persons was not improved.

443

The support system recorded 63 errors in log files when the eight participants operated it.
Twenty of the errors were due to an uninformed specification1 of DoCoPro. Nineteen out of the
remaining 43 were semantic errors because of positions of variables in predicates, such as inputting
“(Leftof R L)” in a line which must have “(Leftof L R)2” in the implementation model. The learning
activity on the support system does not include design of problem representation. The participants
were only given texts explaining problem representation in the sheets provided. Actually in the
posttest, some of the participants reported difficulty in comprehending the problem representation,
such as “Task of programming was heavy, so I did not afford to learn things about the model
construction” and “I wanted graphical information to understand the processes.” This indicates
necessity to expand the learning activity in the framework of the support system in terms of
comprehending problem representation.

The participants’ descriptions about subtraction procedures were incomplete, even though,
they might be sufficient as explanation for people. People would unconsciously complete the missing
condition “the minuend must be equals to or greater than the subtrahend when performing subtraction
(FindDifference1)” if the operation “borrow one from the left digit when the minuend is smaller than
the subtrahend (FindDifference2)” is presented. For computers, however, such incomplete
descriptions are not acceptable. Therefore, having learners examine their own mental processes with
construction of cognitive models may help in facilitating certain thinking, such as computational
thinking. Recent research on science education has paid much attention to computational thinking, the
thought processes involved in formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an information-processing agent (Brennan,
and Resnick, 2012; Yadav, Mayfield, Zhou, Hambrusch, and Korb, 2014). Our framework to provide
opportunities to construct cognitive models for non-information engineering students might contribute
development of computational thinking.

Acknowledgements

This research was partially supported by Grant-in-Aid for Challenging Exploratory Research
15H02927 of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Basu, S., Dukeman, A., Kinnebrew, J., Biswas, G., & Sengupta, P. (2014). Investigating student generated
computational models of science. Proceedings of ICLS2014 (pp. 1097-1101). Boulder, CO: International
Society of the Learning Sciences.

Brady, C. Holbert, H., Soylu, F., Novak, M., & Wilensky, U. (2015). Sandboxes for model-based inquiry.
Journal of Science Education and Technology, 24(2-3), 265-286.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Proceedings of 2012 Annual Meeting of the American Educational Research
Association.

Clement, J. (2000). Model based learning as a key research area for science education. International Journal of
Science Education, 22(9), 1041-1053.

Gilbert, J. K. (2004). Models and modelling: routes to more authentic science education. International Journal of
Science and Mathematics Education, 2(2), 115-130.

Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: are there better ways to learn with
models. School Science and Mathematics, 98(8), 420-479.

1 A syntax error occurs in DoCoPro when a rule name includes some specific multi-byte characters.
2 It is a predicate representing a fact “Column L is located at the left of column R (L and R are

variables).”

444

Hirashima, H., Imai, I., Horiguchi, T., & Toumoto, T. (2009). Error-based simulation to promote awareness of
errors in elementary mechanics and its evaluation. Proceedings of AIED2009 (pp. 409-416). Amsterdam,
Netherlands: IOS Press.

Kanzaki, N., Miwa, K., Terai, H., Kojima, K., Nakaike, R., Morita, J., & Saito, H. (2015). A Class Practice and
Its Evaluation for Understanding Cognitive Information Processing by Constructing Computational
Cognitive Models. Transactions of the Japanese Society for Artificial Intelligence, 30(3), 536-546

Kojima, K., Miwa, K., Nakaike, R., Kanzaki, N., Terai, H., Morita, J., Saito, H., & Matsumuro, M. (2016).
Basic framework for learning by constructing cognitive models based on problem-solving processes.
Workshop Proceedings of ICCE2016 (pp. 451-453). Taoyuan, Taiwan: APSCE.

Nakaike, R., Miwa, K., Morita J., & Terai, H. (2009). Development and evaluation of a web-based production
system for learning anywhere. Proceedings of ICCE2009 (pp. 127-131). Jhongli, Taiwan: Asia-Pacific
Society for Computers in Education.

Nakashima, H. (2008). Methodology and a discipline for synthetic research. Synthesiology, 1(4), 305-313.
Penner, D. E. (2000). Cognition, computers, and synthetic science: building knowledge and meaning through

modeling. Review of Research in Education, 25, 1-35.
Schunn, C. D., Crowley, K., & Okada, T. (1998). The growth of multidisciplinarity in the Cognitive Science

Society. Cognitive Science, 22(1), 107-130.
Seel, N. M., & Blumschein, P. (2009). Modeling and simulation in learning and instruction: a theoretical

perspective. In P. Blumschein, W. Hung, & D. Jonassen (Eds) Model-Based Approaches to Learning (pp.
3-16). Rotterdam, Netherlands: Sense Publishers.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary
and secondary teacher education. ACM Transactions on Computing Education, 14(1).

