
Hayashi, Y., et al. (Eds.) (2017). Workshop Proceedings of the 25th International Conference on Computers in 
Education. New Zealand: Asia-Pacific Society for Computers in Education 

438 

Preliminary Study on Learning by 
Constructing a Cognitive Model Based on 

Problem-Solving Processes 
Kazuaki KOJIMAa*, Kazuhisa MIWAb, Ryuichi NAKAIKEc, Nana KANZAKId, 

Hitoshi TERAIe, Jun’ya MORITAf, Hitomi SAITOg, & Miki MATSUMUROb 
aLearning Technology Laboratory, Teikyo University, Japan 

bGraduate School of Information Science, Nagoya University, Japan 
cDepartment of International Tourism, Heian Jogakuin Universiry, Japan 

dCollege of Nagoya Women's University, Japan 
eFaculty of Humanity-Oriented Science and Engineering, Kindai University, Japan 

fFaculty of Informatics, Shizuoka University, Japan 
gFaculty of Education, Aichi University of Education, Japan 

*kojima@lt-lab.teikyo-u.ac.jp 

Abstract: Construction of models is promising as a learning activity, and computational 
environments are useful for that. However, it can be a heavy task for novice learners to 
construct computational models because it requires considerable instruction and practice of 
programming languages. We designed a basic framework for learning by experiencing 
construction of models on a production system in the domain of cognitive science. In this 
framework, a model abstractly describing human problem-solving processes and its computer 
model implemented on the production system is prepared by an instructor in advance. A 
learner is given the abstract model and processes of problem solving produced by executing 
the implementation model, and then engaged in instantiating the abstract model into an 
implementation model. This activity is expected to deepen learner understanding of mental 
processes embedded in the abstract model. We preliminary studied the effect of learning a 
model which simulates subtraction requiring regrouping in the framework. The results 
confirm the possibility that such experience can improve learner understanding of mental 
processes behind the model, and necessity to expand learning activities in the framework. 
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1. Introduction 

Science in recent decades has used two approaches to understand the natures of targets: an analytical 
approach through observation of targets, and a constructive approach through construction and 
simulation of target models. For example, cognitive science research adopted empirical studies of 
human behaviors and running computational models in understanding human mind (Schunn, Crowley 
and Okada, 1998).  

Models are essential to the production, dissemination, and acceptance of scientific knowledge 
(Gilbert, 2004). As well as science research, science education uses models to have learners interpret 
scientific knowledge. Besides the model use, construction and simulation of models by learners has 
also been argued (Clement, 2000; Gilbert, 2004; Harrison, and Treagust, 1998). Model construction is 
promising as a learning activity in understanding complex or invisible targets, and computational 
environments are useful both for researchers and learners because they enable to instantly construct, 
test, and evaluate models. However, it can be a heavy task for novice learners to construct 
computational models because it requires considerable instruction and practice of programming 
languages (Penner, 2000). Therefore, several studies addressed support for model construction by 
learners (e.g., Basu, Dukeman, Kinnebrew, Biswas and Sengupta, 2014; Brady, Holbert, Soylu, 
Novak, and Wilensky, 2015; Hirashima, Imai, Horiguchi and Toumoto, 2009). Support by the studies 
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allow learners to construct and simulate models by designing models abstractly describing the 
attributes or behaviors of targets. Instantiation of the models into computer-executable models is left 
to support systems. Here, the former models of abstract description of targets are referred to as 
abstract models, and the latter as implementation models. These studies successfully alerted 
misconceptions, produced conceptual changes, and deepened understanding in scientific phenomena 
through designing abstract models. 

Models on which computer simulations are based correspond to both instructionally 
designed models and interfaces to guide learner model construction (Seel, and Blumschein, 
2009). Thus, the support systems described above may be limited to targets which can be 
represented as models of interaction among agents and objects. Mental processes in problem solving 
by a person, for example, could not be properly modelled on an interface to arrange agents and 
objects. Therefore, learning of human mental processes with computational models must require a 
different approach. 

We designed a basic framework for learning by model construction in the domain of cognitive 
science (Kojima, Miwa, Nakaike, Kanzaki, Terai, Morita, Saito, and Matsumuro, 2016). In this 
framework, a learner instantiates an abstract model initially given into an implementation model. 
Basically, abstract models are critical in learning by construction because they are externalized 
products in understanding of targets. On the other hand, implementation of models also plays a critical 
role in deepening understanding as demonstrated in history of cognitive science. One of the central 
keys in learning by construction is to receive feedback from actual or virtual worlds through 
instantiation of abstract models into implementation models (Nakashima, 2008). Our framework is 
intended to provide opportunities for learners to gain such benefits through model construction with 
lower load. In this paper, we reported a preliminary study to confirm the effect of experience 
construction of a cognitive model.  

2. Support System for Learning by Constructing Cognitive Models 

Figure 1 illustrates the framework for learning of human problem-solving processes by constructing 
cognitive models. In this framework, a learner is given an abstract model of problem solving, and 
processes of the problem solving produced by executing its implementation model. He or she is then 
engaged in instantiating it into the implementation model by himself/herself according to the 
processes. This activity allows to experience construction of a cognitive model with lower load, and is 
expected to deepen learner understanding of mental processes embedded in the abstract model (e.g., 
sophisticating a mental model of learners about a phenomenon the abstract model represents). 
 

Learner

Abstract model Implementation model processes

…

s0 s1 sn
- name: FindDifference
if:
- (Goal FindDifference)
- (Processing ?C)
- (Focus ?C)
- (Slot ?Nlower ?C ROWLOWER)
- (Slot ?Nupper ?C ROWUPPER)
- (*test-greater-or-equal ?Nupper ?Nlower)
then:
- (*delete (Goal FindDifference))
- (*deposit (Goal WriteAnswer))

- name: LeftCarry
if:

…

- name: FindDifference
if:
- (Goal FindDifference)
- (Processing ?C)
- (Focus ?C)
- (Slot ?Nlower ?C ROWLOWER)
- (Slot ?Nupper ?C ROWUPPER)
- (*test-greater-or-equal ?Nupper ?Nlower)
then:
- (*delete (Goal FindDifference))
- (*deposit (Goal WriteAnswer))

- name: LeftCarry
if:

…

Implementation model

instantiation

simulation
and evaluation

 

Figure 1. Framework for learning by constructing cognitive models 
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We implemented a support system for the framework, which adopts a production system as an 
architecture of implementation models. Actually, it uses DoCoPro (Nakaike, Miwa, Morita and Terai, 
2009), a production system designed for learning by constructing models by novice learners. Before 
the system is given to learners, an instructor implements a cognitive model for an abstract model of 
human problem-solving on DoCoPro. The system executes the model and extracts its problem-solving 
processes. It then creates information indicating steps involved in the processes. This information 
includes explanation of a production rule fired and two states in the working memory before/after the 
rule firing for each step of the processes.  

Figure 2 shows a screenshot of the support system. As the left side of the figure indicates, the 
system provides information of each step in the problem-solving processes. For every step of the 
processes, the learner composes a production rule which can change the before-state to the after-state 
with the editor of the right side. The learner can check his/her rule on each step through comparison 
between the after-state and the result from firing the rule. Construction of the implementation model 
is completed through composition of rules for all steps. Although learners cannot experience design of 
problem representation in this framework, it enables the learners who are not familiar with 
programming to experience instantiation of an abstract model and receiving of feedback from the 
instantiation. 
 

 

Figure 2. Screenshot of support system 

3. Preliminary Study of the Effect of Learning by Constructing a Cognitive Model 

We empirically studied whether experience of model construction with the support system had the 
learning effect. We used a model of subtraction requiring regrouping, which was used in a practice of 
our previous study (Kanzaki, Miwa, Terai, Kojima, Nakaike, Morita, and Saito, 2015). Everyone can 
easily solve problems of subtraction, but do it implicitly with procedural knowledge. Such problem 
solving is suitable as a learning target because construction of its model requires deep understanding 
of implicit mental processes automatically performed. 

In the practice of previous study, undergraduates trained model construction on DoCoPro in a 
90-minutes class, which was followed by three classes where they constructed a subtraction model 
and a bug model producing incorrect answers because of bugs in rules. This model construction was 
supported by a function visually representing states in the working memory. 

3.1. Method  

Eight undergraduates who had not experienced in training computer programming participated in this 
study. Prior to the study, they learned model construction on DoCoPro with instructional contents 
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used in the previous study. In this study, they first responded to a pretest. This test asked the 
participants to solve a subtraction problem 317 – 98,” describe general procedures to perform 
subtraction, and infer what made incorrect answers to two problems “9008 – 3149 = 5959” and 
“806303 – 182465 = 623938.” These answers occurred because the solver merely changed 0 into 9 
when digits to borrow a number were 0. The first subtraction problem was not intended to test the 
participants, but to bring procedures of regrouping to their attention before describing subtraction 
procedures.  

Second, the participants learned procedures to compose a model according to processes given 
from the support system with instructional video. They then were given two sheet of paper which 
described an abstract model of subtraction in a state-transition diagram, and explanation of predicates 
used in implementing a model. After the instructions, they actually instantiated the abstract model into 
an implementation model.  

Finally, the participants responded to a posttest including the tasks to describe subtraction 
procedures and infer bugs in the two problems, which were identical to those of the pretest. They were 
then asked to report what they had learned in the instantiation of the model.  

In the analysis of the subtraction-procedures task, we checked whether participants’ 
descriptions included information corresponding to ten rules comprising the implementation model. 
For each rule, participants’ descriptions were categorized into present when including corresponding 
information, incomplete when including corresponding information whose conditions and operations 
were specialized or insufficient, or absent when including no relative information. The information of 
the ten rules was as follows. 

FindDifference1 If the minuend is equal to or greater than the subtrahend in the digit to perform 

subtraction (processing digit) (then move to WriteAnswer) 

WriteAnswer Write the difference between the minuend and subtrahend 

ShiftColumn Shift the processing digit to the left column 

Completed Finish when the difference in the far-left column is written 

FindDifference2 If the minuend is smaller than the subtrahend in the processing digit (then move to 

LeftCarry) 

LeftCarry Shift the digit to borrow 1 (focus digit) to the left column 

GetCarry1 If the minuend in the focus digit is not zero, then subtract 1 from it and shift the focus 

digit to the right 

PutCarry1 Add 10 to the focus digit (and then move to FindDifference) 

GetCarry2 If the minuend in the focus digit is zero (then move to LeftCarry) 

PutCarry2 Add 10 to the focus digit (and then move to GetCarry) 

For example of PutCarry2, descriptions such as “add 10 to the one’s place” and “add 10 to the 
right digit” were categorized incomplete because some subtraction problems are not correctly solved 
with these operations.  

Because the bug inference task was used in the previous study mentioned above, we 
scored the participants’ responses in the same way: two points if the bug causing the incorrect 
answers to the two problems was appropriately described, one point if factors causing the two 
incorrect answers were described with a single consistent rule but not appropriate, and zero 
point if only the phenomena were described or factors were described with two different 
rules.  
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3.2. Results 

All of the participants successfully instantiated the implementation model on the support system. The 
average time it took them to finish the tests and model construction was about 60 minutes. 

The participants successfully solved the subtraction problem in the pre-test. Figure 3 indicates 
the categories for each rule in the subtraction procedures task in the pre- and posttests. The 
participants’ descriptions in the pretest included much incomplete information or no information 
about the lower five rules. These rules are corresponding to procedures to borrow a number in 
regrouping. Descriptions including such information increased, on the other hand, in the posttest. 

The average score of the bug inference task was 0.88 in the pre-test, and 1.13 in the post-test. 
Actually, only two of the eight participants scored higher in the post-test than in the pre-test.  
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Figure 3. Categories for each rule in the subtraction procedures task 

3.3. Discussion 

Figure 3 revealed that the participants’ descriptions about subtraction procedures were improved 
through experience of instantiation into the implementation model on the support system. In the 
pretest, their descriptions omitted much information about regrouping procedures. Although they 
could easily perform subtraction procedures, they could not exactly explain them. The information 
was expanded in the posttest. In the posttest, five out of the eight participants reported findings about 
their implicit, automatized mental processes, such as “the process was complex than I had expected, 
although I perform subtraction in everyday life” and “I found I usually omit some steps when I 
explain procedures of subtraction to someone.” Those facts confirm the possibility that support 
system improved their understanding of mental processes behind the model they learned. On the other 
hand, information about some procedures did not change such as FindDifference 1 and Completed. 
They are conditions to perform subtraction in a column and finish entire subtraction. Perhaps that was 
because of the difficulty in externalizing automatized mental processes. And this difficulty had not 
been overcome thoroughly. 

The scores in the bug inference task did not changed in the pre- and posttests. Because the 
participants did not experience construction of any bug model, performance in this task to infer 
thinking processes by other persons was not improved. 
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The support system recorded 63 errors in log files when the eight participants operated it. 
Twenty of the errors were due to an uninformed specification1 of DoCoPro. Nineteen out of the 
remaining 43 were semantic errors because of positions of variables in predicates, such as inputting 
“(Leftof R L)” in a line which must have “(Leftof L R)2” in the implementation model. The learning 
activity on the support system does not include design of problem representation. The participants 
were only given texts explaining problem representation in the sheets provided. Actually in the 
posttest, some of the participants reported difficulty in comprehending the problem representation, 
such as “Task of programming was heavy, so I did not afford to learn things about the model 
construction” and “I wanted graphical information to understand the processes.” This indicates 
necessity to expand the learning activity in the framework of the support system in terms of 
comprehending problem representation. 

The participants’ descriptions about subtraction procedures were incomplete, even though, 
they might be sufficient as explanation for people. People would unconsciously complete the missing 
condition “the minuend must be equals to or greater than the subtrahend when performing subtraction 
(FindDifference1)” if the operation “borrow one from the left digit when the minuend is smaller than 
the subtrahend (FindDifference2)” is presented. For computers, however, such incomplete 
descriptions are not acceptable. Therefore, having learners examine their own mental processes with 
construction of cognitive models may help in facilitating certain thinking, such as computational 
thinking. Recent research on science education has paid much attention to computational thinking, the 
thought processes involved in formulating problems and their solutions so that the solutions are 
represented in a form that can be effectively carried out by an information-processing agent (Brennan, 
and Resnick, 2012; Yadav, Mayfield, Zhou, Hambrusch, and Korb, 2014). Our framework to provide 
opportunities to construct cognitive models for non-information engineering students might contribute 
development of computational thinking. 
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