
Hayashi, Y., et al. (Eds.) (2017). Workshop Proceedings of the 25th International Conference on Computers in
Education. New Zealand: Asia-Pacific Society for Computers in Education

471

Proposal of a Stepwise Support for Structural
Understanding in Programming

Kento KOIKEa*, Takahito TOMOTOa & Tsukasa HIRASHIMAb
aFaculty of Engineering, Tokyo Polytechnic University, Japan

bGraduate School of Engineering, Hiroshima University, Japan
*c1418030@st.t-kougei.ac.jp

Abstract: The importance and effectiveness of stepwise learning in programming education
has long been advocated. However, there has been little concrete discussion of what kind of
stepwise learning should be conducted. This research thus examines the properties of
knowledge and comprehension processes in learning programming. Previous studies have also
proposed “learning to read stepwise” and “learning to construct stepwise,” and integrating
these concepts is worthwhile. We thus propose their combination, “learning to understand
stepwise.” Although it was possible to show its usefulness in individual works, we could not
investigate the effectiveness of the process as a whole.

Keywords: Programming education, stepwise understanding, structural understanding.

1. Introduction

In general, system design is chosen as necessary to achieve system requirements, and developers must
be skilled in thinking about what kind of design will satisfy the given requirements. In other words,
design skill in programming can be expressed as a problem-solving skill aimed at satisfying
requirements.

In problem solving, a certain solution for a problem cannot be used for other problems.
Therefore, solution itself are not reusable. However, when multiple problems are solved, a solution
for a common term between problems may be obtained. For example, a learner who has learned how
to code a selection sort or a bubble sort may notice that two values are always rearranged in the source
code. Likewise, they might notice that rearrangement of these two values involves swapping them.
Recognition of such meaningful commonalities urges the structuring of knowledge, improving skills
at recognizing the source code used to achieve algorithmic steps. This structured knowledge allows
partial application to other problems (i.e., code reuse). The concept of improving reusability by
componentization and modularization is common in structured programming and is useful for
structural design.

In recent studies of learning to program, there has been a focus on mastering syntactic
knowledge (Egi & Takeuchi, 2007; Ishikawa, Matsuzawa & Sakai, 2014; Kanemune, Nakatani,
Mitarai, Fukui & Kuno, 2004; Miura, Sugihara & Kunifuji, 2009) and understanding algorithms
(Matsuda, Kashihara, Hirashima & Toyoda, 1995; Matsuzawa, Yasui, Sugiura & Sakai, 2014;
Sugiura, Matsuzawa, Okada & Ohiwa, 2008; Yano, Fujisaki, Hirashima & Takeuchi 2001), but few
studies focus on improving design capability, particularly the ability to design for reusability.
Procedural design can be achieved by acquiring syntactic knowledge and understanding of algorithms,
but it is not possible in this way alone to support structural design improvement, such as improving
the reusability of parts by converting them into meaningful chunks of statements. To make a
statement into a meaningful chunk, one must understand the relations between statements and
recognize meaningful chunks of multiple statements. We grouped these skills and positioned them as
structural understanding. Structuring of learners’ prior knowledge is indispensable to acquiring
structural understanding. We have thus focused on reconstruction of prior knowledge in programming
(Koike & Tomoto, 2017), but there remains insufficient knowledge regarding the properties of prior
knowledge and what needs to be concrete in its reconstruction.

472

This research thus examines a method for reconstructing knowledge for structural
understanding, with the goal of improving design skills in programming.

2. Knowledge and Understanding in Programming

2.1. Distinction of Knowledge

According to Shneiderman and Mayer (1979), knowledge in programming can be broadly divided into
semantic and syntactic knowledge. Semantic knowledge in programming is knowledge of algorithms
and does not depend on knowing specific programming language. Examples include low-level
concepts such as the operation performed in an assignment statement, the meaning of an array, the
distinction of data types, exchanging the places of two values, and totaling the contents of an array.
These can be expanded to higher-order concepts. In contrast, syntactic knowledge is more focused on
detail, such as language-specific knowledge of the syntax of assignment or conditional statements or
the names of library functions. It is easier to acquire new syntactic knowledge when existing semantic
knowledge can be applied.

Kanamori, Tomoto, and Akakura (2013) also distinguish between knowledge types, proposing
that a conversion process occurs between requirements, abstract operations (such as steps in a flow
chart), and concrete operations (i.e., source code) (Fig. 1). Considering the classifications by
Shneiderman and Mayer, the conversion process from requirements to abstract operations draws on
semantic knowledge, and the conversion from abstract to concrete operations uses syntactic
knowledge. This is also pointed out by Watanabe et al. Although the process of converting from
requirements to abstract operations involves problem solving, the process of converting from abstract
to concrete operations is a straightforward conversion of language.

As stated in Chapter 1, it is important to discover common semantic terms for structural
understanding, so we think that reconstruction of semantic knowledge is necessary for learners.

Figure 1. Process of programming. (Kanamori et al., 2013)

2.2. Comprehension Process of Programmers

In reconstructing semantic knowledge, it is essential to examine how programmers use semantic
knowledge in the program comprehension process. Shneiderman and Mayer (1979) proposed a model
of the cognitive process when programmers actually perform programming. Figure 2 shows the
integration of knowledge discrimination into their model. Shneiderman and Mayer suppose that a
programmer presented with a problem uses programming knowledge to internally construct a
semantic structure that contains the multiple layers to be expressed in the program, and that this acts
as a model. With the highest-level semantic structure, it is necessary to understand the requirements
that the program is to satisfy. For example, the requirement may be to sort groups of input of fixed
length, or to output the words most frequently occurring in an input. In addition, this higher-level
understanding can be satisfied even when the low-level semantic structure is not fully understood. In
the low-level semantic structure, there is an understanding of the chunks of source code needed to
implement familiar algorithms. Similarly, understanding the low-level semantic structure does not
provide understanding of the overall operation. When these semantic structures are understood,
programmers do not memorize or understand programs on a statement-by-statement basis.

What is important here is that the high-level and low-level semantic structures are usually
used independently. For example, (1) if the concept of value swapping is understood, then a learner
can identify a swap included in the source code for a bubble sort, but this does not imply
understanding that the whole source achieves swapping. The reverse is also true: (2) even when the

473

concept of sorting is understood, the programmer does not necessarily realize that swapping will be
included. In the case of such a separated semantic structure, a programmer has the following
problems. In the case of (1), it is impossible to recognize the requirements of the entire source code by
combining low-level concepts. Moreover, in the case of (2), it is not possible to partition internal
behavior from the requirements of the whole source code, which does not lead to an understanding of
detailed behavior. From these problems, it is important to reconstruct the relations between low-level
and high-level semantic structures to enable structural understanding. Therefore, we think that
stepwise support in moving from a low-level semantic structure to a high-level one is important.

Figure 2. Comprehension process of programmers. (Shneiderman & Mayer, 1979)

3. Stepwise Learning

3.1. Stepwise Abstraction

We examine the stepwise learning method for reconstructing semantic knowledge. The learning
method here refers to concrete learning methods for “meaning deduction” and “algorithm design” in
Kanamori’s process of programming (Fig. 1) (Kanamori et al., 2013). Watanabe’s “stepwise
abstraction” method has been proposed as an additional learning method for supporting the meaning
deduction process (Watanabe et al., 2015). This stepwise abstraction has been proposed in reference
to learning support using a stepwise refinement process. Shinkai and Sumitani (2008) referred to this
as “stepwise subdividing the program from requirements.”

The stepwise abstraction process iteratively reads a given statement, gathers a set of parts
considered to be a series of operations in the statement, and then incorporates these, acting as a
stepwise reading support process. For example, in a program consisting of three assignments—(1) c =
a, (2) a = b, and (3) b = c—although each statement is a simple assignment, considering the meaning
of the three steps together reveals the concept of swapping. In this stepwise abstraction, low-level
semantic structures are constructed by combining source code statements one by one, and the low-
level semantic structure is converted to a high-level semantic structure by aggregating these low-level
semantic structures. In this way, programmers can acquire new concepts by reading. However, there
is no stepwise support for learning to read code. Without stepwise support, programmers will read
code by using separate semantic structures (low-level and high-level semantic structures) as described
in Section 2. As a result, they will be unable to construct a semantic structure in a stepwise fashion.
Therefore, the authors think that stepwise presentation of abstraction will promote structural
understanding among learners.

474

3.2. Expandable Modular Statements

The authors have attempted to support learning via expandable modular statements targeting the
algorithm design process (Koike & Tomoto, 2017). In an expandable modular statement (Fig. 3), a
learner first constructs parts in meaningful chunks from each statement in the program. New processes
are added to the constructed parts, available parts are added, and parts are changed by partially
modifying already constructed parts. Parts to be constructed, added, or modified here are presented to
the learner. In the expandable modular statement, programs are constructed by combining statements
and other parts with the presented parts. Therefore, at each step, a semantic structure one level higher
than the lowest semantic structure is presented, and the learner is required to decompose the semantic
structure into a lower-level semantic structure. For example, referring to Fig. 3, the construction
“swap a and b” is first requested. When this construction is completed, “sort a and b” is then
requested as the next semantic structure. In this way, semantic structures are presented in a stepwise
fashion. By repeatedly changing these parts, it is possible to expand the semantic structures of the
parts in steps, which encourages learners to understand the relations among parts. Expanding the parts
step by step additionally trains learners to make large parts themselves, which we consider useful for
actual design.

Figure 3. The expandable modular method. (Koike & Tomoto, 2017)

3.3. Proposed Learning Method

Stepwise abstraction (Watanabe et al., 2015) and expandable modular statements (Koike & Tomoto,
2017) are not exclusive approaches; we consider them to act as a series of techniques to facilitate the
reconstruction of semantic knowledge in programming. They are important not only for stepwise
reading but also for actually reading contents stepwise to construct the contents in steps and to
understand the structure of large programs. Therefore, we propose learning to understand stepwise as
a method of knowledge reconstruction in programming. The learning comprises stepwise abstraction
for learning to read programs and expandable modular statements for learning to construct programs.

Learning to understand stepwise follows the procedure shown in Fig. 4. First, learners are
presented the source code as a problem (similar to stepwise abstraction). Second, learners put together
statements that they think are meaningful to the source code. Third, learners think about the request
that the summarized part satisfies. Next, learners are required to rebuild the statements and parts in the
order of the summarized source code for their requirements. In the process of abstraction,
understanding of the program structure is facilitated by stepwise learning, and skill at reading
programs can be improved. In the process of construction, learners reuse parts of the program as
understood by stepwise learning.

We suggest that the program is understood in stages through repeating the learning process
and that this contributes to the acquisition of structural understanding as described in Section 1. We
use a preliminary experiment to verify the validity of the proposed method.

475

Figure 4. Learning to understand stepwise.

4. Preliminary Experiment

Preliminary experiments were conducted to investigate the effectiveness of the method proposed in
Section 3.

4.1. Experimental Method

The subjects were nine students who had studied programming for three years in programming
lectures and acquired basic concepts such as “for” and “if” statements, algorithms such as sorting, and
use of functions. We conducted experiments after choosing four students for the control group and
five students for the experimental group such that academic skills were evenly divided in the opinion
of the experimenter. We divided the pre-test into a ten-minute “constructing task” and a five-minute
“reading task.” The “constructing task” presents three problems describing the code requirements. In
the “reading task,” the source code that was the answer to the problem presented in the “constructing
task” is presented and the requirement is described. That is, the answer to the constructing task
corresponds to the answer of the reading task. The learner moves to the learning task for 60 minutes
after the pre-test. In the experimental group, we presented learning to read stepwise and learning to
construct stepwise tasks for 2 out of 3 problems presented in the pre-test. In the control group, we
presented learning to read stepwise and learning to construct as usual tasks for the same problems as
the experimental group. After the learning task, we carried out a post-test of both groups using the
same problem and response time as in the pre-test. After completion of the post-test, we administered
a five-minute questionnaire regarding the four stages. All tests / tasks were presented in paper media.

4.2. Experimental Results and Consideration

Table 1 shows the scores for the constructing task of the pre- and post-tasks (full score is 3 points per
problem) and the reading task (full score is 3 points per problem).

The results of the pre-test (see Table 1) show that subjects who have undergone third-year
university lectures in both groups cannot construct novel programs by themselves. Also, the subjects
cannot understand programs even if they read them, which shows that the statements cannot be
understood as meaningful chunks. The results of the pre-test show that in both groups, a program once
learned can be constructed similarly to how they were presented. Similar improvement of results was
seen in both groups, so program reading skills were improved. Since the scores of both groups
increased between the pre- and post-tests, learning to read stepwise appears effective for learning.

However, there was no difference in average score between the experimental and control
groups. For that reason, we could not evaluate the effectiveness of learning to construct stepwise. The
reason for this is that a ceiling effect is seen in the pre- and post-test scores, and it seems that a task of
constructing a program in more detail was necessary. In addition, the time for learning task may be
too short. Further consideration is needed regarding difficulty levels, time limits, and the method of
distribution between experimental and control groups.

476

Both results are likely to be a memorization effect because 3 out of 2 problems in the test
content are presented in the learning task and the same test was repeatedly used. However, since the
experimental group had better memorize than the control group in reading learning, it is likely that
there are several good factors in the learning task of the experimental group.

Table 1: Test score results

Constructing task Reading task

Pre-test Post-test Difference Pre-test Post-test Difference

Experimental group 0.40 2.20 1.80 0.80 2.60 1.80

Control group 0.00 2.50 2.50 0.50 2.25 1.75

4.3. Questionnaire Result and Consideration

Table 2 shows the questionnaire results for both groups using a 4-point scale (4: Totally agree; 1: Do
not agree at all), with the exceptions described below. Table 2 shows the question items and the
average responses from the experimental and control groups.

“Learning to read stepwise” was accepted as a method by both groups, as reflected in the test
results. However, is the groups differed strongly in their assessment of the construction teaching
method, which was learning to construct stepwise for the experimental group and learning to construct
as usual for the control group. Also, it is clear that there is a difference in feelings related to teaching
materials between the groups, even in other questions. In addition, responses to questions that were
posed to the experimental group only indicated that stepwise learning of construction was highly
evaluated. With regard to the question “After stepwise reading, is stepwise construction or the usual
construction most effective?” respondents preferred stepwise construction (coded as 4).

To summarize the questionnaire results, (1) a high evaluation was obtained for stepwise
learning, and (2) after stepwise reading, the same results occurred for “stepwise construction” and
“the usual construction.” From this, we evaluated stepwise learning of construction.

Table 2: Questionnaire results

Question Exp.
Avg

Ctrl.
Avg

Does learning with this material lead to structural understanding? 4.00 3.00

Does learning with this material lead to recognizing programs as parts? 3.80 3.25

Did you recognize the importance of structurally understanding through experiments? 3.80 3.25

Were the learning contents in the teaching materials effective in solving the post-test? 3.40 2.75

Is stepwise reading effective for understanding the program? 3.80 3.50

Is stepwise construction effective for understanding the program? 4.00 -

Is stepwise reading and construction together effective for understanding the program? 3.80 -

After stepwise reading, is stepwise or usual construction more effective? 3.40 -

477

5. Evaluation of Learning to Construct Stepwise

Although preliminary experiments on paper media in Section 4 suggested the effectiveness of learning
to read stepwise, the evaluation of learning to construct stepwise did not have sufficient power. We
therefore developed a system for stepwise learning of construction and performed evaluations using
that system (Koike & Tomoto, 2017).

5.1. Learning Support System Overview

Figure 5 shows a screen of the system. In this system, each part is positioned as a block, each
conventional programming statement is defined as a standard block, and parts extended by adding
new statements and existing parts to a standard block are defined as an advanced block. The system is
intended to support programming instruction that builds structural understanding of programs by
setting advanced blocks to be constructed as goals and promotes learning by showing combinations of
blocks that are easier to conceive before more difficult ones.

In the operation of this system, first, the minimum unit algorithm to be learned from the
system at the center upper part of the screen is presented as an advanced block (ex. sort two
variables). Second, to construct the advanced block, the learner adds the block (ex. advanced block of
"swap", standard block of "if") from the block list on the left side of the screen to the work area in the
center of the screen. Third, the learner aims to build an advanced block by freely changing the value,
order and hierarchy of the added block in the work area. Finally, the student answers from the answer
button on the upper right of the screen, and if it is wrong, it adjusts again in the work area. In this
series of work learners can freely obtain hints and partial answers from the system.

Figure 5. Screenshot of the “learning to construct stepwise” system. (Koike & Tomoto, 2017)

5.2. Experimental Method

The subjects were 17 students who had studied programming for three years in programming lectures
and had already acquired basic concepts such as “for” and “if” statements, sorting algorithms, and use
of functions. We administered a 15-minute pre-test that contained 8 questions that can be developed
in series (including 4 basic problems and 4 learning-transfer problems) to measure fundamental
programming and design skills. For the basic problems, we prepared problems in the range of learning
tasks. For learning-transfer tasks, we prepared problems beyond the scope of learning materials but
that could be solved by transferring learning. Also, the pre-tests called for structuring such as
functionalization in each problem to the extent possible and instructed that respondents reuse earlier

478

answers in other problems. These evaluations made two types of evaluations: a simple score that
evaluated whether the procedure is correct, and a structured score that evaluated functionalization and
reuse in other problems. Based on the results, we divided participants into an experimental group (9
subjects) to learn using the proposed system and a control group (8 subjects) to learn the same
problem via a paper medium. Groups were chosen such that the average score and distribution of
scores were as similar as possible. The subjects first learned using the system or paper media after
studying the material for 30 minutes. After that, we carried out a 15-minute post-test with the same
contents and evaluation as the pre-test. After the post-test, we conducted a questionnaire using a 4-
point evaluation on the learning methods and teaching materials.

5.3. Experimental Result and Consideration

Tables 3–7 show the scores of the pre- and post-tests of the experiment and control groups and the
results of the test. All tests were evaluated at a significance level of 5%.

Table 3 shows the simple and structured score evaluations for the pre- and post-tests. The
simple score data in Table 3 shows that the experimental group had a lower score than did the control
group in in the pre-test, but a higher score than the control group in the post-test. Table 4 shows the
results of ANOVA on the simple scores of the basic and learning-transfer problems in the pre- and
post-tests. In Table 4, there were significant differences in test timing. The structured scores in Table
3 show that in the pre-test, although scores in the experimental group were higher than those in the
control group, the average value of the experimental group in post-testing is higher than that in the
control group, and the difference in test timing scores is larger than the control group in the post-test.
To investigate between-group effects, Table 5 shows mean values for A–B interaction in the simple
scores for the basic and metastasis problems. A significant trend is seen in the metastasis problem for
the experimental group. Table 6 shows the results of ANOVA for the structured score of the basic and
learning-transfer problems in the pre- and post-tests. In Table 6, significant differences were found for
group, test timing, and A–B interactions. Table 7 shows the mean values for A–B interaction in the
structured scores for the basic and learning-transfer problems. The table shows significant differences
in the experimental group not only for basic problems in the learning range but also for the learning-
transfer problems exceeding the learning range. Therefore, from the results of the pre- and post-tests,
significant results were obtained for structuring in the experiment group, so the system can be
considered useful for structural understanding of the program. Also, since there was a significant
difference in the experimental group for test timing, the score in the experimental group improved
more than that in the control group.

Table 3: Test score results

Simple score Structured score

Pre Post Difference Pre Post Difference

Experimental group 1.44 4.67 3.22 0.33 3.22 2.89

Control group 1.50 3.88 2.38 0.25 0.63 0.38

Table 4: Results of ANOVA for the simple scores

Basic problem Learning-transfer problem

Factors SS df F SS df F

Group 0.08 1 0.05 1.83 1 0.65

Error 24.86 15

42.05 15

Test timing 23.14 1 39.17* 11.12 1 21.02*

479

Interaction 0.08 1 0.14 2.30 1 4.34

Repetitive error 8.86 15

7.94 15

*: p (<0.05)

Table 5: Means for A–B interaction for the simple scores

Basic problem Learning-transfer problem

Factors SS df F SS df F

Group (pre-) 0.00 1 0 0.01 1 0.01

Group (post-) 0.16 1 0.14 4.12 1 2.47

Test timing (experimental) 10.25 1 17.35* 11.76 1 22.23*

Test timing (control) 12.97 1 21.96* 1.65 1 3.13

*: p (<0.05)

Table 6: Results of ANOVA for the structured scores

Basic problem Learning-transfer problem

Factors SS df F SS df F

Group 3.46 1 6.67* 4.17 1 4.56*

Error 7.78 15

13.72 15

Test timing 6.90 1 17.67* 4.50 1 10.49*

Interaction 3.61 1 9.24* 3.09 1 7.20*

Repetitive error 5.86 15

6.44 15

*: p (<0.05)

Table 7: Means for A–B interaction for the structured scores

Basic problem Learning-transfer problem

Factors SS df F SS df F

Group (pre) 0.00 1 0.00 0.04 1 0.06

Group (post) 7.07 1 15.54* 7.22 1 10.75*

Test timing (experimental) 10.25 1 26.23* 7.53 1 17.54*

Test timing (control) 0.26 1 0.68 0.07 1 0.15

*: p (<0.05)

5.4. Questionnaire Results and Consideration

Tables 8 and 9 show the results of the questionnaires given to both groups using a 4-point scale (4:
Strongly agree; 1: Do not agree at all) and the results as analyzed by a chi-squared test to show
differences between the distribution of both groups.

480

In the chi-squared test, scores of 3 or 4 were evaluated as positive, and scores of 1 or 2 as
negative, at a significance level of 5%. Table 8 shows the results of a questionnaire inquiring as to the
importance of each question item. In these results, differences in distribution did not appear in either
the experimental group or the control group for each question item, and there was no notable
difference for each skill. However, as Table 9 shows, there were differences in the results of a
questionnaire asking whether each of the learning materials used for the experimental and control
groups would improve each skill, indicating that the learning materials for the experiment group were
more useful. There was no score less than that for the learning material of the control group.

Table 8: Results from a questionnaire on importance of skill

Questions Exp.
Avg

Ctrl.
Avg

Skill in recognizing chunks of programs as parts 3.78 3.50

Skill in understanding relations between programs 3.78 3.88

Skill in increasing reusability for each program 3.78 3.75

Skill in structurally understanding programs 3.78 3.88

*: p (<0.05)

Table 9: Results from a questionnaire related to learning materials

Questions Exp.
Avg

Ctrl.
Avg

Did the material lead to understanding programming? 3.00* 2.25

Did the material lead to understanding relations between programs? 2.89* 1.63

*: p (<0.05)

6. Discussion and Future Works

This research showed that structural understanding is important for understanding relations between
statements and for recognizing meaningful clusters of multiple statements in order to perform
structural design in designing system development. Also, for structural understanding, we considered
it necessary to reconstruct prior knowledge. Prior knowledge is divided into semantic and syntactic
knowledge, and we consider that reconstructing relations in semantic knowledge leads to structural
understanding. It is thought that low-level and high-level semantic structures are separate in the
understanding process of programmers, and that it is necessary to reconstruct semantic structures with
stepwise support. From previous research, stepwise abstraction has been proposed for stepwise
learning of reading, and expandable modular statements have been proposed as a tool for stepwise
learning of construction. Contributing to the reconstruction of semantic structures by integrating these
methods is considered as learning to understand stepwise. Preliminary experiments were conducted to
verify this method. These experiments showed an effect for learning to read stepwise, but no effect for
learning to construct stepwise. For that reason, we evaluated a system for stepwise learning of
construction and obtained significant results, indicating that stepwise learning is effective for both
reading and construction. We therefore suggest that learning to understand stepwise is possible.

Future works will include system development using the proposed method and devising
experimental methods to verify its learning effects.

481

Acknowledgements

This study was partially funded by Grants-in-Aid for Scientific Research (C) (15K00492) and (B)
(K26280127) in Japan.

References

 Egi, T., & Takeuchi, A. (2007). An Analysis on a Learning Support System for Tracing in Beginner’s
Debugging. In Proceedings of the 2007 Conference on Supporting Learning Flow Through Integrative
Technologies (pp. 509–516). Amsterdam, The Netherlands, The Netherlands: IOS Press. Retrieved from
http://dl.acm.org/citation.cfm?id=1565478.1565573

Ishikawa, Y., Matsuzawa, Y. & Sakai, S. (2014). A Prototype of Workbench for Understanding the Concept of
Polymorphism in Object-Oriented Language. Transactions of Japanese Society for Information and
Systems in Education, 31(2), 208–213. http://doi.org/10.14926/jsise.31.208 (in Japanese)

Kanamori, H., Tomoto, T. & Akakura, T. (2013). Development of a Computer Programming Learning Support
System Based on Reading Computer Program. (S. Yamamoto, Ed.) Human Interface and the Management
of Information. Information and Interaction for Learning, Culture, Collaboration and Business. Springer
Berlin Heidelberg. http://doi.org/10.1007/978-3-642-39226-9_8

Kanemune, S., Nakatani, T., Mitarai, R., Fukui, S. & Kuno, Y. (2004). Design and Implementation of Object
Sharing for Dolittle Language. Journal of Information Processing, 45(5), 81. Retrieved from
http://ci.nii.ac.jp/naid/110002712352/en/ (in Japanese)

Koike, K. & Tomoto, T. (2017). Proposal of Granularity Expand Method in Parts for Structural Understanding
on Programming and Development Leaning Support System. Japanese Society for Information and
Systems in Education - Research Report, (8), 211–221. (in Japanese)

Matsuda, N., Kashihara, A., Hirashima, T., & Toyoda, J. (1995). An Instructional System for Constructing
Algorithms in Recursive Programming. Advances in Human Factors/Ergonomics, 20, 889–894.
http://doi.org/http://dx.doi.org/10.1016/S0921-2647(06)80140-1

Matsuzawa, Y., Yasui, H., Sugiura, M. & Sakai, S. (2014). Seamless Language Migration in Introductory
Programming Education through Mutual Language Translation between Visual and Java. Journal of
Information Processing, 55(1), 57–71. Retrieved from http://ci.nii.ac.jp/naid/110009660234/en/ (in
Japanese)

Miura, M., Sugihara, T. & Kunifuji, S. (2009). A Workbench for Understanding Relationship between Variable
and Data in Object Oriented Programming Language. Journal of Information Processing, 50(10), 2396–
2408. Retrieved from http://ci.nii.ac.jp/naid/110007970523/en/ (in Japanese)

Shinkai, J. & Sumitani, S. (2008). Development of Programming Learning Support System Emphasizing
Process. Japan Journal of Educational Technology, 31, 45–48.
http://doi.org/10.15077/jjet.KJ00004964344 (in Japanese)

Shneiderman, B. & Mayer, R. (1979). Syntactic/semantic interactions in programmer behavior: A model and
experimental results. International Journal of Parallel Programming, 8(3), 219–238.

Sugiura, M., Matsuzawa, Y., Okada, T. & Ohiwa, H. (2008). Introductory Education for Algorithm
Construction: Understanding Concepts of Algorithm through Unplugged Work and Its Effects. Journal of
Information Processing, 49(10), 3409–3427. Retrieved from http://ci.nii.ac.jp/naid/110007970228/en/ (in
Japanese)

Watanabe, K., Tomoto, T. & Akakura, T. (2015). Development of a Learning Support System for Reading
Source Code by Stepwise Abstraction. In International Conference on Human Interface and the
Management of Information (pp. 387–394). Springer.

Yano, M., Fujisaki, K., Hirashima, T., & Takeuchi, A. (2001). Prolog Learnig Assistant System with Structured
Diagram. Transactions of Japanese Society for Information and Systems in Education, 18(3), 319–327.
Retrieved from http://ci.nii.ac.jp/naid/10007406289/en/

