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Abstract: In this paper, we develop an educational support system based on an automatic 
impasse detection method. In programming education, novice learners occasionally experience 
various impasses during coding exercises. A learner’s impasse log, which includes information 
such as the type of the impasses and timestamps at which they reached the impasses, would be 
useful for the learning and teaching of programming, such as for reflective learning and one-
on-one instructions. Although several systems have been developed to understand students’ 
programming statuses, there is no system based on the students’ impasse in programming. We 
developed a ruleset to detect impasses automatically based on the indications of students’ codes 
and errors and improved the detection ability through an experimental introduction in actual 
classrooms. Using this framework, we developed a system that supports learners to perform 
reflective learning. We conducted a pilot experiment to evaluate the contribution of our system 
to reflective learning and obtained positive evaluation results. 
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1. Introduction

In programming education, novice learners occasionally experience various impasses during coding 
exercises; they might be unable to identify correct implementations or resolve certain compilation errors 
for a long time, and therefore not be able to proceed with their exercise. However, in the typical style 
of programming exercises, teachers and teaching assistants tend to have a relatively large number of 
students to monitor and understand every student’s impasses individually and precisely. 

We consider that, unlike students coding effortlessly, those reaching an impasse would have 
some indication during their coding process. If we can identify such indications of impasses by 
observing how novice learners perform their coding exercises and how they reach impasses, it could be 
feasible to generate a ruleset for impasse detection. Based on this consideration, it would be possible to 
implement an automatic, rule-based impasse detection and record it in an impasse log. 

A learner’s impasse log, which includes the type of the impasse, a snapshot of the program-
code, and the compilation and run-time errors at that time, can be useful for learning and teaching 
programming; specifically, we can exemplify student’s reflective learning, one-on-one instruction 
during the exercise, and classroom designing. During reflective learning, students can reflect how they 
had reached impasse and how they had broken it using their personal impasse log as a clue. During 
classroom exercise, teachers can locate the students reaching an impasse and identify the type of 
impasse by monitoring their impasse logs in real-time. For classroom designing, the impasse logs can 
focus the teachers’ attention on learning items that had been difficult for many students to understand. 

In this paper, we describe a system that records impasse logs and visualizes the summary. To 
develop the ruleset for impasse detection, we observed some novice learners’ coding activities and 
whether the learners reached an impasse. Furthermore, we recorded the snapshot of their program-code 
and the compilation and run-time errors every a certain time period. Based on the codes and errors 
recorded at the time when the learners had reached an impasse, we generated a ruleset for impasse 

288

Chen, W. et al. (Eds.) (2017). Proceedings of the 25th International Conference on Computers in Education. 
New Zealand: Asia-Pacific Society for Computers in Education 



detection. We describe the ruleset development in Section 3 and our system in Section 4. We introduced 
our system into an actual class of 110 students for three months, and collected nearly 2000 impasse 
logs. In Section 5, we describe the pilot experiment that we conducted to verify our system’s 
contribution to reflective learning. The evaluation results suggest that our system supports student’s 
reflection to a certain degree. 
 
 
2. Related Work 
 
The concept to support learning and education by monitoring learners’ behaviors has a long history in 
computing education research. The most intuitive approach is tracking learners’ activities using the 
logging data of course management systems (Mazza & Dimitrova, 2004) in a certain computer-based 
learning environment (Biswas & Sulcer, 2010). In the context of programming education, Thomas et 
al. (2003) monitored the generic computer usage of programming students, recording low level actions 
such as mouse clicks, typing, and window changes. They identified the abstracted meanings and 
purposes of students’ action by analyzing the recorded actions. However, additional research is required 
because it is very difficult to analyze large-scale data using a bottom-up approach and to extract 
meaningful actions from them. 

Compiler error messages are frequently used to understand the status of students’ programming. 
Brown and Altadmri (2014) collected the error messages of a large number of students (more than 
100,000) from numerous institutions and analyzed the frequently made programming mistakes of 
novice learners. They highlighted teachers’ subjective impressions about novice learners’ common 
mistakes. Hartmann, MacDougall, Brandt, and Klemmer (2010) developed the HelpMeOut system that 
supports learners to debug compilation errors. HelpMeOut tracks code evolution over time and collects 
learners’ modifications that take program-code from an error state to error-free state. When a learner 
experiences a compilation error, HelpMeOut, as a sample solution, suggests the modification of the 
other learner who had experienced the same compilation error in the past. 

Piech et al. (2010) adopted an approach that uses the changes in learners’ program-code. To 
model how students learn programming, they collected students’ code at certain time intervals and at 
every time a student compiled a project. They developed a programming model of students by modeling 
student progress, based on a Hidden Markov Model. They estimated transition parameters using recoded 
codes as observed outputs. Their model could potentially provide insights into whether students require 
interventions. 

Our study is novel because we supported learners to not proceed with their programming 
exercises, but to perform reflective learning. Our basic idea also includes supporting teachers to provide 
one-to-one instruction in the exercise, and to design classroom. On that point, our approach is similar 
to the study of Piech et al. However, our approach is different from it in that ours uses both learners’ 
codes and errors and is based on an exercise-independent ruleset. Moreover, our impasse detection is 
based on abstracted indications of learners’ coding activities, whereas that of Piech et al. (2010) is based 
on the superficial indications appearing on the learners’ codes. 
 
 
3. Ruleset Development for Impasse Detection 
 
3.1 Ruleset Development Based on Observing Learners’ Coding Activities 
 
For impasse detection, we recognized the indications appearing only on learner’s program-code and 
compilation/run-time errors. Learners’ coding activities provide other information such as the points of 
their gaze or the motions of their eyes, captured using eye tracking devices. However, this information 
is not realistic because such devices might not be introduced into actual coding exercises normally, and 
hence they would impose a burden to the learners. An externalization of learner’s thinking is also 
difficult for a similar reason. Therefore, we developed a subsystem to record four types of learner 
information: every one-minute program-code, every compiled program-code, every (if any) compilation 
error, and every (if any) run-time error. 
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To collect instances of impasse indications appearing on these types of information, we invited 
five voluntary undergraduate students majoring in computer science. We gave them programming tasks 
and observed their coding activities. The task involved solving few problems from a past regional 
Association for Computing Machinery / International Collegiate Programming Contest (ACM-ICPC) 
that the students had never seen. The total number of observed students was 15 and the total time of 
observation was approximately 30 hours. During their problem-solving, we collected abovementioned 
information using our subsystem and observed whether the learners reached an impasse; if yes, what 
were the causes of the impasse. 

Through the observations, we classified learners’ impasses into the following four types: 
Type 1. Learners unable to develop implementation strategy (including requirements 

interpretations, algorithm and data-structures design, and program design). 
Type 2. Learners unable to resolve compilation errors. 
Type 3. Learners unable to resolve run-time errors. 
Type 4. Learners unable to modify the code to function as they expected. 
We investigated all recorded codes and errors on each impasse type. Table 1 presents the 

indications appearing on the codes and errors for each impasse type derived from the investigation. 

Table 1: Indications appearing on the codes and errors for each impasse type. 
Type of impasse Indications 

Type 1 (1-1) The learner has not modified the code for a long time. 

Type 2 
(2-1) Compilation errors do not decrease even when the learner has compiled 

successively. 
(2-2) Compilation errors once resolved have reoccurred. 

Type 3 (3-1) Same run-time errors have occurred successively. 

Type 4 

(4-1) The learner has repeatedly modified the same position in the code. 
(4-2) Statement calling a standard output function, such as printf(), with some 

variable as arguments has been added and then removed. 
(4-3) Compilation has been repeatedly executed in a short time period. 
(4-4) Code has been re-modified to a previous code. 
(4-5) A large part of code has been modified at once. 
(4-6) Statements including the same variable have been modified 

successively. 
The automatic impasse detection could be performed by recording learners’ codes and errors in 

real time, scanning the indications (Table 1) in the recorded materials, and reporting corresponding type 
of impasse if an indication was found. Based on results of this investigation, we generated the ruleset 
for impasse detection, presented in Table 2, setting underlined threshold parameters. The following 
threshold parameters were derived from our investigation. 
Table 2: Ruleset for automatic impasse detection. 

Type of impasse Conditions to detect 
Type 1 (1-1) The learner has not modified the code for ≥15 minutes. 

Type 2 
(2-1) Compilation errors have not decreased between any two sequential 

compilations by the learner. 
(2-2) Compilation errors once resolved have reoccurred. 

Type 3 (3-1) Same run-time errors occurred ≥7 times, successively. 

Type 4 

(4-1) Same position in the code has been successively modified by the learner 
≥2 times. 

(4-2) Statement calling a standard output function, such as printf(), with some 
variable as arguments has been added and then removed. 

(4-3) Compilation has been executed ≥2 times in ≤3 minutes. 
(4-4) Code has been re-modified to a previous code. 
(4-5) ≥15% of the code has been modified at once. 
(4-6) Statements including the same variable have been modified ≥3 times, 

successively. 
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3.2 Improving the Detection Ability of the Ruleset 
 
We introduced the subsystem of impasse detection into actual classes of an introductory Java 
programming course, from October 7, 2016, to November 17, 2016, (6 weeks). We aimed to evaluate 
the detection ability of the ruleset described in the previous subsection, and to adjust rules or threshold 
parameters to improve the detection ability. The course named “Programming” is offered to first grade 
undergraduate students majoring in computer science. A total of 110 students were enrolled in the 
course. The subsystem detected 2104 impasses within our experimental introduction, and recorded them 
into impasse logs, which included the impasse types and the snapshot of the codes and errors. To verify 
the validity of the ruleset, we measured the recall and precision of detected impasse logs as follows: 

 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

In the precision calculation, each impasse of all 2104 detections was manually classified into 
correct, incorrect, or non-identifiable, judging from the codes and errors recorded with the impasse. As 
the result, we obtained 938 correct, 1004 incorrect, and 162 non-identifiable detections; hence, the 
precision was .483. In the recall calculation, the number of all recorded codes and errors was 
considerably large to classify each of them into detect or not detect. Therefore, a 5% random sample of 
all records was classified. Consequently, we obtained 108 impasses to detect and 91 correct detections 
by the ruleset from the sample; hence, the recall was .843. 

We reviewed the logs of misdetected impasses and found overdetections frequently. Moreover, 
we found misdetection because at condition (2-1) a trivial syntax error occurred while a student was 
resolving another compilation error; hence, the total number of errors did not decrease. To improve the 
detection ability, we adjusted the threshold parameters of the ruleset and modified condition (2-1) in 
Table 2. Table 3 provides our modified ruleset for impasse detection; the revisions are underlined. 

 
Table 3: Modified ruleset for automatic impasse detection. 

Type of impasse Conditions to detect 
Type 1 (1-1) The learner has not modified the code for ≥15 minutes. 

Type 2 
(2-1) The learner has not resolved identical compilation errors during four 

sequential compilations. 
(2-2) Compilation errors once resolved have reoccurred. 

Type 3 (3-1) Same run-time errors have occurred ≥7 times, successively. 

Type 4 

(4-1) Same position in the code has been modified by the learner ≥4 times, 
successively. 

(4-2) Statement calling a standard output function, such as printf(), with some 
variable as arguments has been added and then removed. 

(4-3) Compilation has been executed ≥5 times in ≤2 minutes. 
(4-4) Code has been re-modified to a previous code. 
(4-5) ≥25% of the code has been modified at once. 
(4-6) Statements including the same variable have been modified ≥5 times, 

successively. 
 
With the modified ruleset, 1836 impasses were detected from the same codes and errors. Of the 

total detections, 922 were correct, 756 were incorrect, and 158 were non-identifiable; hence, the 
precision was .549. We obtained 89 correct detections by the modified ruleset from the same sample 
containing 108 impasses to detect; hence, the recall was .824. F-measure, the harmonic mean of recall 
and precision, improved from .614 for the initial ruleset to .659 for the modified ruleset.  
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4. Overview of Our System Architecture 
 
We developed the system visualizing the impasse summary, incorporating the subsystem for automatic 
impasse detection mentioned in the previous section. Java was the target programming language. Figure 
1 displays our system architecture. 

 

 
Figure 1. Overview of our system architecture. 

 
Our system consists of the coding information tracker, the automatic impasse detector, and the 

impasse summary visualizer. The coding information tracker records for each learner every one-minute 
program-code that the learner is coding, every compiled program-code, every (if any) compilation error, 
and every (if any) run-time error. The automatic impasse detector scans the coding information in real-
time, detects each learner’s impasse based on the ruleset described in the previous section, and records 
the type of impasse with coding information as the impasse log. The impasse summary visualizer 
summarizes the recorded impasse log and visualizes based on the user’s demand, namely, for reflective 
learning, one-on-one instruction during the exercise, or designing classroom. We have described the 
implementation of the coding information tracker and the automatic impasse detector as the subsystem 
in the previous section. Up to the present time, the impasse summary visualizer was also implemented 
only for learners’ reflective learning. 

In reflective learning, learners reflected on the status of their understanding and identified the 
learning target that they had failed to understand. Hence, the impasse summary visualizer for reflective 
learning was required to visualize an overview of the types of impasses the learners had reached in 
exercises, and the snapshots of program-codes when they were experiencing impasses. Figure 2 
provides the visualization of our impasse summary visualizer, including the snapshots of codes in (A), 
heat-map style summary of impasse detection in (B), impasse detection for each condition of the ruleset 
in (C), and interface of selecting a snapshot of the learners’ code in (D). 

If all of the detected impasses were listed for the reflective learners, they would not understand 
what they should begin reflecting on. The visualizer provides the time-based summary of detected 
impasses in heat map style in (B), and each time slot is colored more deeply according to the more 
number of satisfied impasse conditions. Moreover, each satisfied condition is visualized on the time 
base in (C), presenting a period of detecting time. According to the visualizations in (B) and (C), learners 
clicked on a condition of impasse to reflect in (C), and then click on the system visualize buttons in (D) 
of the time slot included in the time period to detect the corresponding condition. When the learners 
clicked on a time slot button in (D), the system visualized the source codes at the beginning and end of 
the selected time slot. 
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Figure 2. Visualization of our impasse summary visualizer. 

 
 
5. Pilot Experiment 
 
We conducted a pilot experiment to evaluate the contribution of our system to reflective learning. The 
experimental hypotheses are summarized as follows: 

H1: Our system allows learners to easily perform reflective learning. 
H2: The impasses detected and visualized by our system is useful for reflective learning. 
H3: Our system promotes deeper reflection in reflective learning. 

The subjects were five first grade undergraduate students majoring in computer science, who had 
participated in classrooms that had introduced our subsystem, experimentally described in Section 3. 
The targets of reflective learning were the actual exercises in the classrooms. 

First, we explained the meaning and purpose of this experimental reflective learning and how 
to externalize the achievement of the reflection to the subjects in five minutes. Thereafter, we had the 
subjects perform the following three stages of reflective learning: 

Reflection 1: Reflection depending on their memory and exercise materials only. 
Reflection 2: Reflection with their impasse log recorded by our subsystem’s tracker and 

detector. 
Reflection 3: Reflection using our system that includes a tracker, detector, and visualizer. 
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The subjects provided written briefs about their learning achievements at the end of every stage. 
After all of the reflective learning, we administered a questionnaire survey related to the subjects’ 
activities of reflective learning and the contribution of our system to it. The questionnaire contained the 
following five items on a five-point scale and a comment item: 

Q1. How easy was it to perform reflective learning in Reflection 1? 
Q2. How easy was it to perform reflective learning in Reflection 2? 
Q3. How easy was it to perform reflective learning in Reflection 3? 
Q4. How much did the impasses detected by our system contribute to reflective learning? 
Q5. How instinctively correct were the impasses detected by our system? 
Table 4 provides the responses of each subject for each questionnaire item. For each item, a 

higher score indicated a more positive response. The responses to Q1, Q2, and Q3 suggest that the 
subjects preferred reflection with impasse log to reflection without any support of our system, and 
preferred reflection with system’s visualization to reflection with raw log data. In addition, subjects #3 
and #5 were exceptions; subject #3 preferred reflecting with raw impasse log because his coding time 
was extremely shorter than all other subjects and his impasse log was so small that he could easily 
observe his entire codes and errors without any summarization. However, subject #5 stated the most 
positive points for all reflections in his responses because his coding time was extremely long. He 
experienced impasses so frequently that all reflections sufficiently supported his understandings. On 
the other hand, his response in the comment item was that the easiest reflective learning was in 
Reflection 3. Based on this discussion, we consider that these results support H1. Moreover, the 
responses to Q4 and Q5 indicate that the subjects positively assessed the validity of impasse detections 
and the contributions of the detected impasses. We consider that these results support H2. 

 
Table 4: Questionnaire responses of each subject. 

Item Subj #1 Subj #2 Subj #3 Subj #4 Subj #5 Ave. 
Q1 3 2 1 4 5 3.00 
Q2 3 2 5 2 5 3.40 
Q3 5 4 4 5 5 4.60 
Q4 5 4 4 5 5 4.60 
Q5 4 4 5 4 5 4.40 

 
To verify H3, we reviewed the subjects’ briefings after each reflection stage. The details of the 

descriptions increased in the order of Reflection 1, 2, and 3, as a whole. Subject #1 described an impasse 
about Java methods at Reflection 1, while he described an impasse about methodization at Reflection 
3. Subject #2 described the lack of understanding arrays at Reflection 1, while he described his concrete 
mistakes on processing Java arrays at Reflection 3. The other subjects also displayed similar behavior, 
describing details at Reflection 3, such as concrete mistakes and times in impasses, that were not found 
in the descriptions at Reflection 1. We consider that these evaluation results support H3. 

We must consider that a small number of subjects may influence the accuracy of these 
verifications. Our discussions do not have sufficient reliability because we could not procure a sufficient 
number of subjects for the experiment. However, we believe continuous practice will suppress this 
matter. Based on these discussions, we conclude that although preliminarily, our system could support 
learners to perform reflective learning as a whole. 
 
 
6. Conclusion 
 
In this paper, we described automatic, rule-based impasse detection and the system supporting learners 
to perform reflective learning by visualizing the summary of the detected impasses. Learners’ impasse 
logs, which included the type of the impasse, the snapshot of program-code and the compilation and 
run-time errors at that time, would be useful for the learning and teaching of programming. Unlike 
learners coding effortlessly, those reaching an impasse are expected to experience some indication of 
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the impasse during their coding process. Therefore, we developed a ruleset to detect impasses based on 
the indications in learners’ codes and errors, and improved the detection ability by adjusting rules and 
threshold parameters through an experimental introduction into actual classrooms. Using this 
framework, we developed the system supporting learners to reflect how they had reached the impasse 
and how they had resolved it using the detected impasses as a clue. We conducted a small pilot 
experiment to evaluate the contribution of our system to reflective learning. The evaluation was based 
on a questionnaire survey and the achievements of reflective learning externalized by the subjects. The 
positive results of the evaluation suggest that our system could help learners attain some progress in 
reflective learning. 

We must consider that a statistically insufficient number of the subjects in the experiment may 
influence the accuracy of verification. However, we believe that a continual practice of using our system 
will suppress this matter. Currently, our actual classrooms do not provide learners the time to reflect on 
their learning. We plan on introducing our system into the classrooms to make students cultivate a better 
understanding of programming exercises by performing reflective learning using our system. Persistent 
evaluations of students’ understandings would clarify the contribution of our system, and hence 
suppress this matter. 

Currently, the impasse summary visualizer is implemented only for learners’ reflective 
learning. In the future, we will continue the development of the visualizer for teachers’ one-on-one 
instruction during the exercise and for classroom designing. We believe that teachers will not need only 
an overview of the impasse detections, but an overview of the correspondences between the learning 
target and each detected impasse. We plan to extend our system to address this issue, incorporating 
existing program evaluation systems. The existing systems (Konishi, Suzuki, & Itoh, 2000) evaluate 
the correspondences between learners’ code and sample code prepared by the teacher. Using this 
framework, we consider that our system could derive the correspondences between the learning target 
and detected impasse by integrating the learning target into each fragment of the sample code. 
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