
An Educational Support System based on
Automatic Impasse Detection

 in Programming Exercises
Koichi YAMASHITAa*, Takumi SUGIYAMAb, Satoru KOGUREc,

Yasuhiro NOGUCHIc, Tatsuhiro KONISHIc & Yukihiro ITOHc
aFaculty of Business Administration, Tokoha University, Japan

bGraduate school of Integrated Science and Technology, Shizuoka University, Japan
cFaculty of Informatics, Shizuoka University, Japan

*yamasita@hm.tokoha-u.ac.jp

Abstract: In this paper, we develop an educational support system based on an automatic
impasse detection method. In programming education, novice learners occasionally experience
various impasses during coding exercises. A learner’s impasse log, which includes information
such as the type of the impasses and timestamps at which they reached the impasses, would be
useful for the learning and teaching of programming, such as for reflective learning and one-
on-one instructions. Although several systems have been developed to understand students’
programming statuses, there is no system based on the students’ impasse in programming. We
developed a ruleset to detect impasses automatically based on the indications of students’ codes
and errors and improved the detection ability through an experimental introduction in actual
classrooms. Using this framework, we developed a system that supports learners to perform
reflective learning. We conducted a pilot experiment to evaluate the contribution of our system
to reflective learning and obtained positive evaluation results.

Keywords: Educational support system, automatic impasse detection, reflective learning

1. Introduction

In programming education, novice learners occasionally experience various impasses during coding
exercises; they might be unable to identify correct implementations or resolve certain compilation errors
for a long time, and therefore not be able to proceed with their exercise. However, in the typical style
of programming exercises, teachers and teaching assistants tend to have a relatively large number of
students to monitor and understand every student’s impasses individually and precisely.

We consider that, unlike students coding effortlessly, those reaching an impasse would have
some indication during their coding process. If we can identify such indications of impasses by
observing how novice learners perform their coding exercises and how they reach impasses, it could be
feasible to generate a ruleset for impasse detection. Based on this consideration, it would be possible to
implement an automatic, rule-based impasse detection and record it in an impasse log.

A learner’s impasse log, which includes the type of the impasse, a snapshot of the program-
code, and the compilation and run-time errors at that time, can be useful for learning and teaching
programming; specifically, we can exemplify student’s reflective learning, one-on-one instruction
during the exercise, and classroom designing. During reflective learning, students can reflect how they
had reached impasse and how they had broken it using their personal impasse log as a clue. During
classroom exercise, teachers can locate the students reaching an impasse and identify the type of
impasse by monitoring their impasse logs in real-time. For classroom designing, the impasse logs can
focus the teachers’ attention on learning items that had been difficult for many students to understand.

In this paper, we describe a system that records impasse logs and visualizes the summary. To
develop the ruleset for impasse detection, we observed some novice learners’ coding activities and
whether the learners reached an impasse. Furthermore, we recorded the snapshot of their program-code
and the compilation and run-time errors every a certain time period. Based on the codes and errors
recorded at the time when the learners had reached an impasse, we generated a ruleset for impasse

288

Chen, W. et al. (Eds.) (2017). Proceedings of the 25th International Conference on Computers in Education.
New Zealand: Asia-Pacific Society for Computers in Education

detection. We describe the ruleset development in Section 3 and our system in Section 4. We introduced
our system into an actual class of 110 students for three months, and collected nearly 2000 impasse
logs. In Section 5, we describe the pilot experiment that we conducted to verify our system’s
contribution to reflective learning. The evaluation results suggest that our system supports student’s
reflection to a certain degree.

2. Related Work

The concept to support learning and education by monitoring learners’ behaviors has a long history in
computing education research. The most intuitive approach is tracking learners’ activities using the
logging data of course management systems (Mazza & Dimitrova, 2004) in a certain computer-based
learning environment (Biswas & Sulcer, 2010). In the context of programming education, Thomas et
al. (2003) monitored the generic computer usage of programming students, recording low level actions
such as mouse clicks, typing, and window changes. They identified the abstracted meanings and
purposes of students’ action by analyzing the recorded actions. However, additional research is required
because it is very difficult to analyze large-scale data using a bottom-up approach and to extract
meaningful actions from them.

Compiler error messages are frequently used to understand the status of students’ programming.
Brown and Altadmri (2014) collected the error messages of a large number of students (more than
100,000) from numerous institutions and analyzed the frequently made programming mistakes of
novice learners. They highlighted teachers’ subjective impressions about novice learners’ common
mistakes. Hartmann, MacDougall, Brandt, and Klemmer (2010) developed the HelpMeOut system that
supports learners to debug compilation errors. HelpMeOut tracks code evolution over time and collects
learners’ modifications that take program-code from an error state to error-free state. When a learner
experiences a compilation error, HelpMeOut, as a sample solution, suggests the modification of the
other learner who had experienced the same compilation error in the past.

Piech et al. (2010) adopted an approach that uses the changes in learners’ program-code. To
model how students learn programming, they collected students’ code at certain time intervals and at
every time a student compiled a project. They developed a programming model of students by modeling
student progress, based on a Hidden Markov Model. They estimated transition parameters using recoded
codes as observed outputs. Their model could potentially provide insights into whether students require
interventions.

Our study is novel because we supported learners to not proceed with their programming
exercises, but to perform reflective learning. Our basic idea also includes supporting teachers to provide
one-to-one instruction in the exercise, and to design classroom. On that point, our approach is similar
to the study of Piech et al. However, our approach is different from it in that ours uses both learners’
codes and errors and is based on an exercise-independent ruleset. Moreover, our impasse detection is
based on abstracted indications of learners’ coding activities, whereas that of Piech et al. (2010) is based
on the superficial indications appearing on the learners’ codes.

3. Ruleset Development for Impasse Detection

3.1 Ruleset Development Based on Observing Learners’ Coding Activities

For impasse detection, we recognized the indications appearing only on learner’s program-code and
compilation/run-time errors. Learners’ coding activities provide other information such as the points of
their gaze or the motions of their eyes, captured using eye tracking devices. However, this information
is not realistic because such devices might not be introduced into actual coding exercises normally, and
hence they would impose a burden to the learners. An externalization of learner’s thinking is also
difficult for a similar reason. Therefore, we developed a subsystem to record four types of learner
information: every one-minute program-code, every compiled program-code, every (if any) compilation
error, and every (if any) run-time error.

289

To collect instances of impasse indications appearing on these types of information, we invited
five voluntary undergraduate students majoring in computer science. We gave them programming tasks
and observed their coding activities. The task involved solving few problems from a past regional
Association for Computing Machinery / International Collegiate Programming Contest (ACM-ICPC)
that the students had never seen. The total number of observed students was 15 and the total time of
observation was approximately 30 hours. During their problem-solving, we collected abovementioned
information using our subsystem and observed whether the learners reached an impasse; if yes, what
were the causes of the impasse.

Through the observations, we classified learners’ impasses into the following four types:
Type 1. Learners unable to develop implementation strategy (including requirements

interpretations, algorithm and data-structures design, and program design).
Type 2. Learners unable to resolve compilation errors.
Type 3. Learners unable to resolve run-time errors.
Type 4. Learners unable to modify the code to function as they expected.
We investigated all recorded codes and errors on each impasse type. Table 1 presents the

indications appearing on the codes and errors for each impasse type derived from the investigation.

Table 1: Indications appearing on the codes and errors for each impasse type.
Type of impasse Indications

Type 1 (1-1) The learner has not modified the code for a long time.

Type 2
(2-1) Compilation errors do not decrease even when the learner has compiled

successively.
(2-2) Compilation errors once resolved have reoccurred.

Type 3 (3-1) Same run-time errors have occurred successively.

Type 4

(4-1) The learner has repeatedly modified the same position in the code.
(4-2) Statement calling a standard output function, such as printf(), with some

variable as arguments has been added and then removed.
(4-3) Compilation has been repeatedly executed in a short time period.
(4-4) Code has been re-modified to a previous code.
(4-5) A large part of code has been modified at once.
(4-6) Statements including the same variable have been modified

successively.
The automatic impasse detection could be performed by recording learners’ codes and errors in

real time, scanning the indications (Table 1) in the recorded materials, and reporting corresponding type
of impasse if an indication was found. Based on results of this investigation, we generated the ruleset
for impasse detection, presented in Table 2, setting underlined threshold parameters. The following
threshold parameters were derived from our investigation.
Table 2: Ruleset for automatic impasse detection.

Type of impasse Conditions to detect
Type 1 (1-1) The learner has not modified the code for ≥15 minutes.

Type 2
(2-1) Compilation errors have not decreased between any two sequential

compilations by the learner.
(2-2) Compilation errors once resolved have reoccurred.

Type 3 (3-1) Same run-time errors occurred ≥7 times, successively.

Type 4

(4-1) Same position in the code has been successively modified by the learner
≥2 times.

(4-2) Statement calling a standard output function, such as printf(), with some
variable as arguments has been added and then removed.

(4-3) Compilation has been executed ≥2 times in ≤3 minutes.
(4-4) Code has been re-modified to a previous code.
(4-5) ≥15% of the code has been modified at once.
(4-6) Statements including the same variable have been modified ≥3 times,

successively.

290

3.2 Improving the Detection Ability of the Ruleset

We introduced the subsystem of impasse detection into actual classes of an introductory Java
programming course, from October 7, 2016, to November 17, 2016, (6 weeks). We aimed to evaluate
the detection ability of the ruleset described in the previous subsection, and to adjust rules or threshold
parameters to improve the detection ability. The course named “Programming” is offered to first grade
undergraduate students majoring in computer science. A total of 110 students were enrolled in the
course. The subsystem detected 2104 impasses within our experimental introduction, and recorded them
into impasse logs, which included the impasse types and the snapshot of the codes and errors. To verify
the validity of the ruleset, we measured the recall and precision of detected impasse logs as follows:

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

In the precision calculation, each impasse of all 2104 detections was manually classified into
correct, incorrect, or non-identifiable, judging from the codes and errors recorded with the impasse. As
the result, we obtained 938 correct, 1004 incorrect, and 162 non-identifiable detections; hence, the
precision was .483. In the recall calculation, the number of all recorded codes and errors was
considerably large to classify each of them into detect or not detect. Therefore, a 5% random sample of
all records was classified. Consequently, we obtained 108 impasses to detect and 91 correct detections
by the ruleset from the sample; hence, the recall was .843.

We reviewed the logs of misdetected impasses and found overdetections frequently. Moreover,
we found misdetection because at condition (2-1) a trivial syntax error occurred while a student was
resolving another compilation error; hence, the total number of errors did not decrease. To improve the
detection ability, we adjusted the threshold parameters of the ruleset and modified condition (2-1) in
Table 2. Table 3 provides our modified ruleset for impasse detection; the revisions are underlined.

Table 3: Modified ruleset for automatic impasse detection.

Type of impasse Conditions to detect
Type 1 (1-1) The learner has not modified the code for ≥15 minutes.

Type 2
(2-1) The learner has not resolved identical compilation errors during four

sequential compilations.
(2-2) Compilation errors once resolved have reoccurred.

Type 3 (3-1) Same run-time errors have occurred ≥7 times, successively.

Type 4

(4-1) Same position in the code has been modified by the learner ≥4 times,
successively.

(4-2) Statement calling a standard output function, such as printf(), with some
variable as arguments has been added and then removed.

(4-3) Compilation has been executed ≥5 times in ≤2 minutes.
(4-4) Code has been re-modified to a previous code.
(4-5) ≥25% of the code has been modified at once.
(4-6) Statements including the same variable have been modified ≥5 times,

successively.

With the modified ruleset, 1836 impasses were detected from the same codes and errors. Of the

total detections, 922 were correct, 756 were incorrect, and 158 were non-identifiable; hence, the
precision was .549. We obtained 89 correct detections by the modified ruleset from the same sample
containing 108 impasses to detect; hence, the recall was .824. F-measure, the harmonic mean of recall
and precision, improved from .614 for the initial ruleset to .659 for the modified ruleset.

291

4. Overview of Our System Architecture

We developed the system visualizing the impasse summary, incorporating the subsystem for automatic
impasse detection mentioned in the previous section. Java was the target programming language. Figure
1 displays our system architecture.

Figure 1. Overview of our system architecture.

Our system consists of the coding information tracker, the automatic impasse detector, and the

impasse summary visualizer. The coding information tracker records for each learner every one-minute
program-code that the learner is coding, every compiled program-code, every (if any) compilation error,
and every (if any) run-time error. The automatic impasse detector scans the coding information in real-
time, detects each learner’s impasse based on the ruleset described in the previous section, and records
the type of impasse with coding information as the impasse log. The impasse summary visualizer
summarizes the recorded impasse log and visualizes based on the user’s demand, namely, for reflective
learning, one-on-one instruction during the exercise, or designing classroom. We have described the
implementation of the coding information tracker and the automatic impasse detector as the subsystem
in the previous section. Up to the present time, the impasse summary visualizer was also implemented
only for learners’ reflective learning.

In reflective learning, learners reflected on the status of their understanding and identified the
learning target that they had failed to understand. Hence, the impasse summary visualizer for reflective
learning was required to visualize an overview of the types of impasses the learners had reached in
exercises, and the snapshots of program-codes when they were experiencing impasses. Figure 2
provides the visualization of our impasse summary visualizer, including the snapshots of codes in (A),
heat-map style summary of impasse detection in (B), impasse detection for each condition of the ruleset
in (C), and interface of selecting a snapshot of the learners’ code in (D).

If all of the detected impasses were listed for the reflective learners, they would not understand
what they should begin reflecting on. The visualizer provides the time-based summary of detected
impasses in heat map style in (B), and each time slot is colored more deeply according to the more
number of satisfied impasse conditions. Moreover, each satisfied condition is visualized on the time
base in (C), presenting a period of detecting time. According to the visualizations in (B) and (C), learners
clicked on a condition of impasse to reflect in (C), and then click on the system visualize buttons in (D)
of the time slot included in the time period to detect the corresponding condition. When the learners
clicked on a time slot button in (D), the system visualized the source codes at the beginning and end of
the selected time slot.

292

Figure 2. Visualization of our impasse summary visualizer.

5. Pilot Experiment

We conducted a pilot experiment to evaluate the contribution of our system to reflective learning. The
experimental hypotheses are summarized as follows:

H1: Our system allows learners to easily perform reflective learning.
H2: The impasses detected and visualized by our system is useful for reflective learning.
H3: Our system promotes deeper reflection in reflective learning.

The subjects were five first grade undergraduate students majoring in computer science, who had
participated in classrooms that had introduced our subsystem, experimentally described in Section 3.
The targets of reflective learning were the actual exercises in the classrooms.

First, we explained the meaning and purpose of this experimental reflective learning and how
to externalize the achievement of the reflection to the subjects in five minutes. Thereafter, we had the
subjects perform the following three stages of reflective learning:

Reflection 1: Reflection depending on their memory and exercise materials only.
Reflection 2: Reflection with their impasse log recorded by our subsystem’s tracker and

detector.
Reflection 3: Reflection using our system that includes a tracker, detector, and visualizer.

293

The subjects provided written briefs about their learning achievements at the end of every stage.
After all of the reflective learning, we administered a questionnaire survey related to the subjects’
activities of reflective learning and the contribution of our system to it. The questionnaire contained the
following five items on a five-point scale and a comment item:

Q1. How easy was it to perform reflective learning in Reflection 1?
Q2. How easy was it to perform reflective learning in Reflection 2?
Q3. How easy was it to perform reflective learning in Reflection 3?
Q4. How much did the impasses detected by our system contribute to reflective learning?
Q5. How instinctively correct were the impasses detected by our system?
Table 4 provides the responses of each subject for each questionnaire item. For each item, a

higher score indicated a more positive response. The responses to Q1, Q2, and Q3 suggest that the
subjects preferred reflection with impasse log to reflection without any support of our system, and
preferred reflection with system’s visualization to reflection with raw log data. In addition, subjects #3
and #5 were exceptions; subject #3 preferred reflecting with raw impasse log because his coding time
was extremely shorter than all other subjects and his impasse log was so small that he could easily
observe his entire codes and errors without any summarization. However, subject #5 stated the most
positive points for all reflections in his responses because his coding time was extremely long. He
experienced impasses so frequently that all reflections sufficiently supported his understandings. On
the other hand, his response in the comment item was that the easiest reflective learning was in
Reflection 3. Based on this discussion, we consider that these results support H1. Moreover, the
responses to Q4 and Q5 indicate that the subjects positively assessed the validity of impasse detections
and the contributions of the detected impasses. We consider that these results support H2.

Table 4: Questionnaire responses of each subject.

Item Subj #1 Subj #2 Subj #3 Subj #4 Subj #5 Ave.
Q1 3 2 1 4 5 3.00
Q2 3 2 5 2 5 3.40
Q3 5 4 4 5 5 4.60
Q4 5 4 4 5 5 4.60
Q5 4 4 5 4 5 4.40

To verify H3, we reviewed the subjects’ briefings after each reflection stage. The details of the

descriptions increased in the order of Reflection 1, 2, and 3, as a whole. Subject #1 described an impasse
about Java methods at Reflection 1, while he described an impasse about methodization at Reflection
3. Subject #2 described the lack of understanding arrays at Reflection 1, while he described his concrete
mistakes on processing Java arrays at Reflection 3. The other subjects also displayed similar behavior,
describing details at Reflection 3, such as concrete mistakes and times in impasses, that were not found
in the descriptions at Reflection 1. We consider that these evaluation results support H3.

We must consider that a small number of subjects may influence the accuracy of these
verifications. Our discussions do not have sufficient reliability because we could not procure a sufficient
number of subjects for the experiment. However, we believe continuous practice will suppress this
matter. Based on these discussions, we conclude that although preliminarily, our system could support
learners to perform reflective learning as a whole.

6. Conclusion

In this paper, we described automatic, rule-based impasse detection and the system supporting learners
to perform reflective learning by visualizing the summary of the detected impasses. Learners’ impasse
logs, which included the type of the impasse, the snapshot of program-code and the compilation and
run-time errors at that time, would be useful for the learning and teaching of programming. Unlike
learners coding effortlessly, those reaching an impasse are expected to experience some indication of

294

the impasse during their coding process. Therefore, we developed a ruleset to detect impasses based on
the indications in learners’ codes and errors, and improved the detection ability by adjusting rules and
threshold parameters through an experimental introduction into actual classrooms. Using this
framework, we developed the system supporting learners to reflect how they had reached the impasse
and how they had resolved it using the detected impasses as a clue. We conducted a small pilot
experiment to evaluate the contribution of our system to reflective learning. The evaluation was based
on a questionnaire survey and the achievements of reflective learning externalized by the subjects. The
positive results of the evaluation suggest that our system could help learners attain some progress in
reflective learning.

We must consider that a statistically insufficient number of the subjects in the experiment may
influence the accuracy of verification. However, we believe that a continual practice of using our system
will suppress this matter. Currently, our actual classrooms do not provide learners the time to reflect on
their learning. We plan on introducing our system into the classrooms to make students cultivate a better
understanding of programming exercises by performing reflective learning using our system. Persistent
evaluations of students’ understandings would clarify the contribution of our system, and hence
suppress this matter.

Currently, the impasse summary visualizer is implemented only for learners’ reflective
learning. In the future, we will continue the development of the visualizer for teachers’ one-on-one
instruction during the exercise and for classroom designing. We believe that teachers will not need only
an overview of the impasse detections, but an overview of the correspondences between the learning
target and each detected impasse. We plan to extend our system to address this issue, incorporating
existing program evaluation systems. The existing systems (Konishi, Suzuki, & Itoh, 2000) evaluate
the correspondences between learners’ code and sample code prepared by the teacher. Using this
framework, we consider that our system could derive the correspondences between the learning target
and detected impasse by integrating the learning target into each fragment of the sample code.

Acknowledgements

This study was supported by JSPS KAKENHI Grant Numbers JP24300282, JP16K01084.

References

Biswas, G., & Sulcer, B. (2010). Visual exploratory data analysis methods to characterize student progress in

intelligent learning environments. 2010 International Conference on Technology for Education (T4E) (pp.
114-121). IEEE.

Brown, N. C., & Altadmri, A. (2014). Investigating novice programming mistakes: Educator beliefs vs. student
data. Proceedings of the tenth annual conference on International computing education research (pp. 43-
50). ACM.

Hartmann, B., MacDougall, D., Brandt, J., & Klemmer, S. R. (2010). What would other programmers do?
Suggesting solutions to error messages. Proceedings of the SIGCGI Conference on Human Factors in
Computing Systems (pp. 1019-1028). ACM.

Konishi, T., Suzuki, H., & Itoh, Y. (2000). A method of automated evaluation of learners’ programs for assisting
teachers. IEICE Transaction on Information and Systems, 682-692. IEICE.

Mazza, R., & Dimitrova, V. (2004). Visualizing student tracking data to support instructors in web-based distance
education. Proceedings of the 13th international World Wide Web conference on Alternate track papers &
posters (pp. 154-161). ACM.

Piech, C., Sahami, M., Koller, D., Cooper, S., & Bilkstein, P. (2012). Modeling how students learn to program.
Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp. 153-160). ACM.

Thomas, R., Kennedy, G. R., Draper, S., Mancy, R., Crease, M., Evans, H., & Gray, P. (2003). Generic usage
monitoring of programming students. Proceedings of the 20th Annual Conference of the Australasian Society
for Computers in Learning in Tertiary Education (pp. 715-719). ASCILITE.

295

