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Abstract: In this paper, we analyze data gathered from students’ interactions with iList, an
intelligent tutoring system that teaches linked lists to computer science (CS) undergraduates.
A number of features have been extracted from the log files which were used to; a) build
predictive models of students’ performance, b) analyze temporal aspects of students’ problem
solving behavior. Our results suggest that it is possible to build predictive models of
performance with an accuracy of 87% by using logistic regression. The results also show that
it is more likely a student will perform a step correctly if s/he spends more time on it.
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1. Introduction

Educational data mining (EDM) research focuses on analyzing data gathered from students’
interactions with computer-based educational systems. It aims at answering educational research
questions and developing methods to better understand students and the settings which they learn in
(Baker & Yacef, 2009). Mining log data of intelligent tutoring systems (ITS) has the potential of
revealing information important to students, educators, and developers of these systems. Information
that could make education more effective and responsive to individual needs (Mostow & Beck, 2006).
Log files of an ITS generally contain information related to users’ performance and problem solving
behavior while using the system. Data mining techniques can be applied to information extracted from
log files to build models that can predict future performance of users (Cetintas, Si, Xin, & Hord, 2010;
Romero, Ventura, Espejo, & Hervas, 2008). This is an important step for adapting system behavior
and for providing proper interventions (e.g., feedback) to enhance learning.

The ability to predict students’ performance is very important in an educational environment.
It has been suggested that improved student performance prediction could save students tremendous
amount of time and effort that could be alternatively used to learn other tasks (Cen, Koedinger, &
Junker, 2006). Previous research has utilized log data to design predictive models of users’
performance. For example, Cetintas et al. (2010) used data gathered from log data to build a model
that was able to predict correctness of problem solving. Their model utilized some performance,
problem, time, and mouse movement features to build the model. Similarly, Beck and Woolf (2000)
used traces from previous users of a mathematical tutor to construct a linear regression model that
predicts if a student will be able to answer a problem correctly, and how long it will take to answer.
Their model was very accurate at predicting the time students required to generate the response, and
was somewhat accurate at predicting the likelihood of students answering correctly.

In this study we use data gathered from students’ interactions with the iList ITS, which we
will introduce later. We focus on predicting students’ performance using a number of features
extracted from the log files. The contributions of this paper are two fold; first, we apply data mining
and statistical techniques to iL.ist log data in order to understand problem solving behavior of students.
This eventually will lead to improved system design. Second, we build predictive models of students’
performance from features extracted from the log files. Building high-level student models from log
data has the advantage of not explicitly using any expert knowledge of the domain. The rest of the
paper is organized as follows. Section 2 gives an overview of the iList intelligent tutoring system.
Section 3 describes our methodology of data collection and features extracted from log data. Section 4
presents and discusses our results, and describes future work directions.
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2. The iList System

iList is an intelligent tutoring system that is designed to aid teaching basic concepts of data structures

to CS students, particularly linked lists (Fossati et al., 2009). The iList system provides students with

a simulated environment where linked lists are represented graphically and can be manipulated using

programming commands (C++ or Java). Students are asked by the system to solve certain problems

such as, insertion or deletion of a node into a linked list, or performing more complicated operations.

A problem represented by an initial state space is presented, students are then asked to perform a

number of steps to modify the state space till the desired configuration is reached. The system

supports two types of problems; the first type is one where the student delivers a solution in a step-by-
step fashion. The other type requires the student to write an entire block of code that typically
involves constructs such as for loops. In this study we focus only on the former type of problems.

The main components of iList include: 1) the constraint evaluator which checks the correctness
of the submitted solution. The usage of constraints in iList is motivated by constraint-based-modeling
where domain knowledge is modeled as set of constraints. In a linked list problem, there are several
properties that a solution should have in order to be correct. For example, lists should be free of
cycles; lists should not terminate with undefined or incorrect pointers; and no nodes should be made
unreachable from any of the variables. With these properties represented as constraints, iList can catch
many common mistakes students make. 2) The procedural knowledge Model (PKM) is an important
architectural feature of iList. The model is built from past log files of students’ interactions. The core
of this model is a probabilistic graph equivalent to a Markov Chain. Its main components are states
and actions. A state “S” corresponds to a possible linked list state, whereas an action “A” corresponds
to a command that can modify that state. In the graph, actions and states are represented as vertices.
Frequencies associated with states and actions are converted into probabilities using maximum
likelihood estimation. The “goodness” value (“G”) is then computed for each state of the graph, and it
represents a lower bound on the probability that a student will reach a correct solution from that state.
Additionally, for each state, “criticality” (“C”) is computed which represents the probability that a
student will get into a hopeless state (a state with goodness G = 0) from the current state. At run time
student actions can be matched against the graph. And 3) the feedback manager interacts with both
units in order to generate and issue feedback messages as students are progressing towards the
solution.

iList uses both positive and negative feedback strategies to guide learners through their

learning activity, which essentially depends on the correctness of students’ responses. Negative
feedback is given in response to students’ mistakes, which allows students to learn from them.
According to Ohlsson (1996) people indeed learn from making mistakes and correcting them. On the
other hand, positive feedback is provided in response to students making correct steps. This type of
feedback can reinforce the correct knowledge students have, or allow them to successfully integrate
new knowledge if this correct input was originated by a tentative step (Ohlsson, 2008). Negative
feedback is a predominant feature generated by many ITSs today, as those systems are designed to
react to students’ mistakes. However there is increasing evidence that suggests positive feedback may
also be important in enhancing students’ learning (Fossati et al., 2009). We can describe the five
main types of feedback generated by the feedback manager in iList:

Syntactic feedback — Is generated when commands entered by students are syntactically incorrect.

Execution feedback — The system successfully parses the command entered by student, but encounters
a runtime error, e.g. reference to a non-existing variable.

Final feedback — Is presented when the student explicitly asks the system to evaluate his/her solution.
Final feedback comes from a collection of feedback units associated with the individual
constraints that have been violated, which in turn highlight gaps or incorrect knowledge.

Reactive feedback — This feedback is presented in response to a student move, and it depends on the
goodness of a move and its level of uncertainty. Both factors can be obtained from the PKM. For
example, a student enters a command that gets correctly executed, but the student has not yet
completed the problem. This type of feedback can be either negative or positive feedback.

Proactive feedback — iList can look forward to moves a student can make at any given time and it can
intervene with this type of feedback. Proactive feedback depends on the state of the current
solution, its criticality, and time factor based on when the last step has been carried out (Fossati,
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Di Eugenio, Ohlsson, Brown, & Chen, 2010). Proactive feedback can be either negative or
positive.

3. Methods and Data

We used log data from iList, version 5, as described in (Fossati et al., 2010). In our experiments, 32
college students worked with iList for approximately one hour long session during their introductory
computer science data structures course. Students solved problems presented by the system at their
own pace. In this study, we considered the first 5 problems, which use the interactive step-by-step
mode. The system logged various actions taken by the student, including problem selection,
programming commands, and undo/redo operations. Additionally, iList logged the automatically
generated feedback provided to the students, and the metrics the system used to generate such
feedback. In particular, iList recorded its probabilistic estimates of goodness “G” and criticality “C”
of each solution step. These measures are crucial because most of the pedagogical decisions of iList
are based on them. As we will see in section 4.3, our new logistic regression model can improve on
the usage of these metrics alone.

We have extracted a number of features from the log data that will be used in the analysis of
students’ performance and interaction behavior. Some of these features have been used in previous
research (Beck & Woolf, 2000; Mostow & Beck, 2006). Below is a description of these features:

The goodness (G) of state S — Explained in section 2

The criticality (C) of state S — Explained in section 2

Step duration — The time taken by the student to complete the step (milliseconds)

Relative step start time (RSST) — The start time of the step relative to the start time of the problem
(milliseconds), it is the elapsed time since the start of the problem

Log step duration — The natural log transform of step duration

Log RSST — The natural log transform of relative step start time

Number of undos — Number of undos made so far in a given problem

Number of redos — Number of redos made so far in a given problem

Number of bad steps — Number of incorrect steps made in a given problem

Number of good steps — Number of correct steps made in a given problem

Syntax feedback— Number of syntax feedback messages so far in a given problem

Execution feedback— Number of execution feedback messages so far in a given problem

Negative reactive feedback — Number of negative reactive feedback messages

Positive reactive feedback — Number of positive reactive feedback messages

Negative proactive feedback — Number of negative proactive feedback messages

Positive proactive feedback — Number of positive proactive feedback messages

Step type — Refers to the type of actions performed. These can be: Node Declaration: creating a
reference to a node, e.g. Node *T. Node Creation: creating a new node, e.g. T = new Node.
Delete Node: deleting a node from a linked list, e.g. delete T. Data Assignment: assigning a value
to the data field of a node, e.g. T.Data = 3. Link Assignment: assigning the link field of a node to
either another link or null value, e.g. T.link = T1.Link, or T =T1, or T.link = null.

Target Step: The class label (1 = Correct, 0O = Incorrect), it represents the correctness of the step. It is
determined based on the sign of the difference between the goodness G of the previous and
current states. If the sign is positive then the step is considered correct, otherwise it is considered
incorrect.

4. Experiments

We first start by exploring problem solving behavior relative to time. We used one-way ANOVA to
find any significant temporal differences between step types, and between correct and incorrect steps.
We then used logistic regression to build a predictive model of the correctness of a step, which can
then be used to judge student performance. We evaluated a number of models for this purpose with
different feature subsets. We used the SPSS Statistcs17 software package for the ANOVA and logistic
regression analysis. Mathematical details of logistic regression can be found in (Hosmer, 2000).
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4.1 Analysis of Students’ Temporal Problem Solving Behavior

We were interested in exploring the problem solving behavior of students with respect to time (Step
Duration). For this we conducted a number of ANOVAs where time is the response variable. The
independent variables were the Step Type with five levels (Node Declaration, Node Creation, Delete
Node, Data Assignment, Link Assignment), and Target Step. We used natural log transform of Step
Duration because the original variable did not have a normal distribution. The ANOVA was
significant for Target Step * log (Step Duration) F (1, 1921) = 11.19, p < 0.05: this indicates that
students are taking more time to perform correct steps (with a mean M = 3.04), as compared to
students who fall into errors or do incorrect steps, and who take less time (with a mean M = 2.90).
ANOVA also showed a significant effect for Step Type * log (Step Duration), F (4, 1918) = 18.50, p
< 0.05. Bonferroni posthoc tests revealed that Node Declaration (M = 3.25) and Data Assignment (M
= 3.53) took more time and their means were significantly higher than the other step types, Link
Assignment (M = 2.94), Node Creation (M = 2.77), and Node Deletion (M = 2.65). Additionally, Link
Assignment was significantly different from Node Deletion but not from Node Creation. However
this should be viewed within the context of our experimental protocol and the type of problems
(exercises) described earlier. In order to shed some light on the relationship between Step Types and
Target Step, we performed a chi-square independence test. The test was significant X*(4) = 211.13, p
<.05, which indicates that there is some type of dependency or relationship between step type and
getting the step correct or not. Based on these results, we further explore this kind of relationships
between variables via logistic regression analysis.

4.2 Predicting Students’ Performance Using Logistic Regression

We choose logistic regression because we have a binary response variable (Target Step). We build
models that are able to predict if the next step in a problem solving exercise will be correct or not. We
choose to include all the variables (except Step Duration and Relative Step Start Time for which we
include their log transform instead) in the regression model in order to check the prediction power of
each individual variable. We include the Step Type in the regression model. One advantage of logistic
regression is that it can handle categorical variables.

Table 1 shows the results of logistic regression; significant variables at the 0.05 are indicated
by an asterisk next to the coefficient column. The Wald chi-square value and the odds ratios are also
shown. We evaluate and compare two models for this task (Model 1 and Model 2). Model 1
incorporates all features listed in the column labeled Variable in Table 1, while Model 2 excludes the
two probabilistic measures (G and C) which originally were used in iList for task modeling and
feedback generation. Model 1 was significant with X* (18) = 1510.74 and p < .05, which suggests that
this model with these independent variables included is more effective than the null model with
intercept only (baseline model without any independent variables). The Hosmer-Lemeshow (H-L)
goodness-of-fit test of the model was insignificant with X* (8) = 14.45 and p = .07, suggesting that the
model fits the data well. Table 2 shows classification results of Model 1, it classifies 87.7% of
instances correctly. It also shows the recall, and precision for each outcome. The recall for predicting
the correctness of the step is 89.4%, which is slightly higher than that of incorrect steps of 86%.
However the precision is higher for the latter with 88.8%, and 86.6% for the former. On the other
hand, Model 2 was also significant with X* (16) = 964.95 and p < .05, however the H-L test was
significant with X? (8) = 153.51 and p < .05, which indicates that the model is not quite good fit for
the data. Model 2 classifies 81.6% of instances correctly. We also evaluated a logistic regression
model with only G, C, and Log Step Duration; the model was able to classify only 80.4% of instances
correctly.

From Model 1 we can see that the most predictive variables are: G, Number of Bad Steps, C,
Log Step Duration, Step Type, Number of Good Steps, Number of Undos, Number of Redos, and
Feedback Negative Reactive. Coefficients that are close to zero or odds ratios that are equal to one are
not useful predictors. Furthermore, for all continuous variables in the model, the coefficient represents
the change in log odds for each one unit increase of that independent variable. The model suggests a
number of observations. First, chances that students will make correct steps increase if they spend
more
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Table 1: Logistic regression results, predicted variable Target Step =1

Model 1 Model 2
Variable Coefficient | Wald Odds Coefficient | Wald Odds
Step Type 80.00 99.15
Step Type (1)- Data Assignment 43 .94 1.53 72 3.69 2.06
Step Type (2)- Delete Node 37 73 1.45 .52 2.62 1.69
Step Type (3)- Link Assignment .06 .05 1.06 1.03* 17.40 2.80
Step Type (4)- Node Declaration 2.67* 47.85 14.43 3.04* 85.82 20.98
Log RSST -27* 3.87 .76 -.23* 4.17 79
Log Step Duration .54* 30.62 1.72 A7* 5.01 1.19
Number Of Good Steps -.37* 14.80 .69 -.05* .53 .95
Number Of Bad Steps -1.37* | 14754 .26 -1.24* | 177.89 .29
Number Of Redos -.78* 85.48 46 -.62* 80.88 54
Number Of Undos .56* | 107.23 1.75 42* 90.84 1.52
Feedback Syntax .02 .08 1.02 -.01 .06 .99
Feedback Execution .07 .63 1.08 .02 .07 1.02
Feedback Positive Final .06 .23 1.06 21% 4.84 1.23
Feedback Negative Reactive A7* 6.46 1.19 .28* 25.22 1.32
Feedback Positive Reactive -.02 .16 .98 21* 18.58 1.23
Feedback Positive Proactive .02 .05 1.02 -.18* 11.90 .83
Goodness (G) 4.15* | 261.23 63.33
Criticality (C) -1.10* 22.19 .33
Constant -.80 2.03 45 -.26 | 31 ] 77
Model Chi-Square [df] 1510.74 [18] 964.95 [16]
H-L Chi-Square [df] 14.45 [8] 153.51 [8]
% Correct Predictions 87.7 81.6

* Statistically significant, P <.05

time on them, as indicated by the sign of coefficient of Log Step Duration. Similarly, the chances of
getting the next step correct decrease relative to the number of bad steps in a given exercise. Likewise,
it appears that the redo’s and undo’s work in opposite fashion as indicated by the sign of their
coefficients, where the chances of getting a correct answer on the next step decreases with the number
of redo’s performed and increases with the number of undo’s. The G and C scores which encode
probabilistic measures of getting a correct or wrong answer also work in an opposite fashion as
indicated from the signs of their coefficients. Most of the feedback types were not significant in this
model other than Negative-Reactive feedback which has a positive coefficient, indicating the chances
of performing a next correct step increase with more feedback of this type. The model also shows that
Step Type is a significant predictor, however some of coded variables (Step Type(l) Data
Assignment, Step Type(2) Delete Node, Step Type(3) Link Assignment) are not, where the reference
baseline category was set to the first (Create Node) for the purpose of logistics regression. The odds
of getting a Node Declaration correct are almost 14 times higher than the reference category. The
ANOVA analysis we presented earlier revealed that Node Declaration took more time from students.
This might explain the relationship between time spent on a step and getting it correct.

In Model 2, the list of significant features included the proactive and reactive feedback
features. While both positive and negative reactive feedbacks have positive coefficients, the positive
proactive feedback has a negative coefficient. This suggests that these types of feedback have an
opposite effect on student performance. It is also noted that the feature Log RSST has a negative
coefficient in both models. This indicates that some students are relatively slow in solving a problem,
and this might raise the chances of producing errors. However, this effect is stronger in Model 2
compared to Model 1.

Table 2: Classification results of Model 1, observed and predicted frequencies for predicting step
correctness by logistic regression, baseline 50.4% for Target Step = 1.

Predicted
Target Step
Observed 0 1 % Correct (Recall) % Precision
Target Step 0 819 133 86 88.8
1 103 866 89.4 86.6
Overall % Correct 87.7
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4.3 Discussions and Conclusions

Our analysis showed that time has an impact on students’ ability to perform correct or incorrect steps.
The more time students spent on a particular step the higher chances they will perform it correctly,
and vice versa. This also indicates that there are two types of interaction behaviors. First, students
who put more thought into a problem, and students who jump straight into solving a problem without
giving proper thought. While the former behavior should be encouraged, the latter should not. Proper
interventions can be designed to mediate both types of interactions. For example, the system might
not allow the student to type an answer straight, and enforce some time gap between the problem
presentation and when the student can enter his/her answer. However, this could be done relative to
the student historical performance, in order to differentiate between high and low performing students.

In our earlier work, (Fossati et al 2010), the two probabilistic measures G and C (goodness
and criticality of a state), and time, were the only variables used to predict students’ performance. We
have seen an increase by almost 7% in the prediction power for students’ performance after adding the
set of derived features which were obtained from the log files. Using the set of derived features alone
has almost the same prediction power as the probabilistic measures G and C. However, not all these
features were significant predictors as indicated by the results of logistic regression of Model 2
presented in Table 1. It is also apparent from the regression results that there is tendency of falling
into errors as more steps are performed, as indicated by the effect of Number Of Bad Steps predictor,
and to some extent by the Number Of Good Steps.

We were able to achieve acceptable results of predicting students’ performance on a particular
task. The classification models built in this study can be used for predicting and tracking students’
performance and providing proper interventions and guidance through the learning process. The
results from this study will also enforce some design decisions (e.g. interface design, computational
models) for future versions of iList; including our new ITS “ChiQat”. The ChiQat project aims at
building an intelligent tutoring system for teaching basic data structures including lists, trees, stacks,
and recursion.
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