Wong, L.-H. et al. (Eds.) (2013). Proceedings of the 21st International Conference on Computers in
Education. Indonesia: Asia-Pacific Society for Computers in Education

Code Analyser in CSTutor -
a C# Intelligent Tutoring System

Budi HARTANTO®, Jim REYE""
b Science and Engineering Faculty, Queensland University of Technology, Australia
*b1.hartanto@qut.edu.au, j.reye@qut.edu.au

Abstract: This paper describes the process that is performed by CSTutor to analyse each
student program. CSTutor is an Intelligent Tutoring System that supports the student’s
learning by doing. Built as an integrated part of Visual Studio 2010 or 2012, CSTutor can give
assistance to a student writing programs in Visual Studio from the earliest stage. The analysis
process starts by capturing the student’s program from the Visual Studio Editor. The program
is then parsed and simplified into facts in a knowledge base. This knowledge base also
contains rules, actions, constraints, and a goal to be achieved. The goal can be decomposed
into several sub-goals to give a finer detail of feedback to the student. So that it can be used as
a practical supplement to classroom instruction, CSTutor provides a number of exercises that
can be tried by the students. Further, the number of exercises can be increased without having
to change CSTutor’s program code. The teacher just needs to add the description of the
exercise, the constraints, and the goal that should be achieved in the new exercise. The
evaluation of CSTutor is in progress and it is expected that CSTutor will help students learn
programming to an improved degree.

Keywords: Program analyser, C#, Intelligent Tutoring System

1. Introduction

Many Intelligent Tutoring Systems (ITSs) have been developed to help students learn programming
(Johnson & Soloway, 1985; Sykes, 2007; Weragama & Reye, 2012). However, not many ITSs are
really used in classrooms (Pears et al., 2007). Some possible reasons for this are: the number of
exercises in the ITS are too few, and the ITSs can only help students with problems that are related to
program syntax and not to program logic.

The first reason concerns the number of exercises that are supported by the ITS. Because of
the complexity of recognising the students’ code, an ITS may only be able to handle such code for a
few problems only. For example, in Johnson & Soloway (1985), there are only two unrelated
exercises that can be used by the student to practice. When there are only a small number of exercises
and more over they are not related to each other, the exercises cannot be used to incrementally build
up the student’s knowledge about how to write programs.

With regards to the second reason, some ITSs are designed to help the student write a
syntactically correct program, rather than a syntactically and logically correct program (For example:
Sykes, 2007). Because there are many development environments (howadays) that can give assistance
about the syntax errors that may exist in a program, it would be much better if the ITS can concentrate
on giving assistance about any logical problems. The ITS that gives support to syntactic problems
only will lose its charm because the student can get similar support from modern development
environments, without having to run the ITS.

The goal of this research is to help students learn programming, a subject area that is widely
known as difficult (Teague & Roe, 2008). To achieve the goal, we have developed CSTutor, an
Intelligent Tutoring System that can tailor its assistance and feedback based on the state of the user’s
program. CSTutor is expected to be used as a supplement to the classroom instruction. Unlike other
ITSs in the programming domain, CSTutor uses natural learning as its teaching method. Schank and
Cleary (1995) state that natural learning can improve the learning process. By using natural learning
as its teaching method, CSTutor is expected to makes the learning process more enjoyable and
effective.

157

In order to enable CSTutor to be used as a supplement to the classroom instruction, CSTutor
should provide a sufficient number of exercises. Where desired, the teacher can add new exercises to
CSTutor without having to modify the program code. Currently, CSTutor provides 16 programming
problems for the student. These problems cover the topics of assignment statements, conditional
statements, repetition using ‘for’ statements, and one dimensional arrays. More programming
problems are planned. This paper shows how CSTutor recognizes the student program for a given
problem and gives feedback on any student logic errors.

2. Analysing the Student Code

Checking the correctness of a student program can be complex and difficult because the solutions to a
given problem can be numerous and varied. In order to check the correctness of the student program
as well as to give some feedback and assistance, a knowledge base is employed in the ITS. This
knowledge base contains facts, actions, and rules along with the goal for a particular problem.

How can this knowledge base is used to check the student code as well as to give feedback to
the student? For example, assume that the student is asked to find the amount of discount from a total
of items purchased. In the problem description, it is stated that a 10% discount will be given to the
customer when his/her total purchased is greater or equal $100. Otherwise the customer will only get
5% discount. Figure 1 shows parts of some possible solutions of the problem:

Version 1. Version 2. Version 3.
if (purchase >= 100) if (purchase < 100) if (99 < purchase)
disc = 0.1 * purchase; disc = 0.05 * disc = purchase *
else purchase; 10.0/100;
disc = 0.05 * else if (99 < purchase) else
purchase; disc = purchase * 0.1; disc = purchase * 0.05;

Figure 1. Parts of some possible solutions of the problem of calculating a discount
2.1 Setting up the Goal

For the problem described above, we can use the value in variable disc as our goal to see if the student
program can solve the given problem or not. In this case, the final value of this variable is
0.1*purchase if the value of variable purchase is greater than or equal to 100, and 0.05*purchase if
the value of variable purchase is less than 100.

In CSTutor this goal can be represented with a predicate HasVarValue that has three
arguments in it. The first argument will refer to the ID of the variable, the second argument is the
value of the variable, and the third argument is a condition or list of conditions. Figure 2 shows how

the goal of the above problem is defined in CSTutor.
Goal: HasVarValue(varlD_purchase, val_purchase)
HasVarValue(varlD_disc, 0.1*purchase, [GE (val_purchase, 100)])
HasVarValue(varlD_disc, 0.05*purchase, [LT (val_purchase, 100)])

Figure 2. The goal to find the discount based on the value of total purchasing
2.2 Parsing the Student Code

The student’s code is parsed and changed to facts and actions. For an if statement, CSTutor will try to
make explicit of all the implicit conditions and then simplify them. An action will be used to store any
assignment statement inside an if statement along with the simplified condition to become facts.

For example, let’s see how the condition and the assignment statement in the “else if”
statement of Figure 1 - Version 2 be read and stored as facts. Firstly, this condition is made explicit to
become:

[(* (purchase < 100) && (99 < purchase)]. This explicit condition is then simplified to become: (99 <
purchase). The whole code of Figure 1- Version 2 will be stored in knowledge base as:

158

HasVarValue(varlD_disc, 0.05*purchase, [LT(val_purchase, 100)]).-
HasVarValue(varlD_disc, purchase*0.1 , [LT(99, val_purchase)]).

2.3 Checking the Student Code

The last step that is performed is to check if the facts generated from the student code satisfy the goal
or not. There are rules in CSTutor that are used to do this task. Some of them are: a rule to check if the
arithmetic expression in the “fact” is actually the same as the arithmetic expression specified in the
goal or not; a rule to check if the logical expression in the “fact” is actually the same as the logical
expression specified in the goal or not; etc.

For example using the first rule, all of the following arithmetic expressions are considered
equal: “0.1*purchase”, “purchase*10.0/100”, “10*purchase/100.0”, etc. On the other hand, using the
second rule we can check that for an integer variable, the following logical expression are considered
equal: “LessThan(val_purchase, 100)”, “GreaterThan(100, val_purchase)”, “LessEqual(val_purchase,
99)”, etc.

By these and some other rules, CSTutor can check if the facts generated from the student code
satisfy the goal or not. This information is used to give feedback to the student. If necessary, a sub
goal can be defined to give a finer level of feedback.

3. Evaluation Design

At the time of writing, the evaluation of CSTutor is still in progress. The users of this system are the
students at QUT who are taking a C# programming course. Ethical problems would have occurred if
only some students enrolled in the course were allowed to use the ITS. This meant that it was
impossible to have a control group to compare against the students who were using the ITS. Therefore
the evaluation of the natural learning ITS will be measured by comparing the students’ programming
skills before and after they use CSTutor.

Two types of evaluation are being used. One is to measure CSTutor’s capability for checking
the correctness of the students’ code, and the second is to measure CSTutor’s performance in helping
students learn programming. For the first evaluation, a database that records the student program and
the feedback from CSTutor, will be used. Using the database, we can see how many times CSTutor
considers a correct program as correct, and an incorrect program as incorrect.

For the second evaluation, a questionnaire will be used along with the database. This
guestionnaire is designed to obtain student feedback about his/her experiences in interacting with
CSTutor and the effectiveness of CSTutor in helping the student to learn programming.

References

Johnson, W. L., & Soloway, E. (1985). PROUST: Knowledge-based program understanding. Software
Engineering, IEEE Transactions on, (3), 267-275.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., & Paterson, J. (2007). A survey of
literature on the teaching of introductory programming. In ACM SIGCSE Bulletin (Vol. 39, No. 4, pp. 204-
223).

Schank, R.C. & Cleary, C. (1995). Engines for education. New Jersey: Lawrence Erlbaum.

Sykes, E. (2007). Developmental process model for the Java intelligent tutoring system. Journal of Interactive
Learning Research, 18(3), 399-410.

Teague, D., & Roe, P. (2008). Collaborative learning: towards a solution for novice programmers. In
Proceedings of the tenth conference on Australasian computing education-Volume 78 (pp. 147-153).
Australian Computer Society, Inc.

Weragama, D., & Reye, J. (2012). Designing the knowledge base for a PHP tutor. In Intelligent Tutoring
Systems (pp. 628-629). Springer Berlin Heidelberg.

159

