
Wong, L.-H. et al. (Eds.) (2013). Proceedings of the 21st International Conference on Computers in 
Education. Indonesia: Asia-Pacific Society for Computers in Education 

61 
 

 

How do students’ learning behaviors evolve 
in Scaffolded Open-Ended Learning 

Environments? 
 

Gautam BISWAS*, John S. KINNEBREW & Daniel LC MACK 
 

Dept. Of EECS/ISIS, Vanderbilt University, Nashville, TN, USA 
*gautam.biswas@vanderbilt.edu 

 
Abstract: Metacognition and self-regulation are important components for developing 
effective learning in the classroom and beyond, but novice learners often lack these skills. 
Betty’s Brain, an open-ended computer-based learning environment, helps students develop 
metacognitive strategies as they learn science topics. In order to better understand and 
improve the effect of adaptive scaffolding on students’ cognitive and metacognitive skills, we 
investigate students’ activities in Betty’s Brain from a study comparing different forms of 
adaptive scaffolding. We measure students’ cognitive and metacognitive processes from 
students’ action sequences by (i) interpreting and characterizing behavior patterns using a 
cognitive/metacognitive model of the task, (ii) mapping students’ frequently observed 
cognitive and metacognitive process patterns back into their overall activity sequences and 
measuring their effectiveness, and (iii) employing a binning method with clustering and 
visualization techniques to characterize the temporal evolution of these processes. Our 
experimental studies illustrate that the effectiveness and temporal changes in students’ 
behaviors were generally consistent with the scaffolding provided, suggesting that these 
metacognitive strategies can be taught to middle school students in computer-based learning 
environments. 
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1. Introduction 
 
Our research group has developed Betty’s Brain, a computer-based open-ended learning environment 
(OELE; Land, 2000), where middle school students learn science topics by teaching a virtual agent 
named Betty using a visual causal map (Leelawong & Biswas, 2008). As she is taught, Betty can 
answer questions, explain her answers, and when requested by the students take quizzes developed by 
Mr. Davis, a Mentor agent. Betty’s quiz performance helps students assess Betty’s, and, therefore, 
their own knowledge. This motivates them to learn more, so they can help Betty improve her quiz 
score. 

More recently, we have directed our attention to how students develop metacognitive 
strategies that include information seeking, solution construction, and solution assessment as they 
learn the science topics while they teach Betty. Our approach utilizes trace methodologies derived 
from students’ actions and activity patterns in the environment to infer aspects of their metacognitive 
abilities (Aleven et al, 2006; Azevedo, et al., 2012; Hadwin et al, 2007). This is based on a 
metacognition as events hypothesis, which theorizes that the use of metacognitive strategies manifests 
as continually unfolding events that can be inferred from learners’ behaviors.  

In this paper, we extend our previous work on using sequence mining methods to discover 
students’ frequently-used behavior patterns from their activity sequences as they work in the Betty’s 
Brain system (Kinnebrew & Biswas, 2012). In particular, we extend our techniques for analyzing 
students’ action sequences by (i) interpreting and characterizing behavior patterns using a 
cognitive/metacognitive model of the task, (ii) mapping students’ frequently observed cognitive and 
metacognitive process patterns back into their overall activity sequences, (iii) using metrics to 
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evaluate the effectiveness of these processes, and (iv) employing a binning method to characterize the 
temporal evolution of these processes based on their occurrence over the course of learning activities. 

 One of our primary goals in this paper is to study and analyze how students’ learning 
behaviors evolve as they use the Betty’s Brain system. We have developed a combination of sequence 
mining techniques (Kinnebrew, Loretz, & Biswas, 2013) and temporal interestingness measures 
(Kinnebrew, Mack, & Biswas, 2013) to capture and rank students’ activity patterns.  We employ a 
visual technique called heat maps (Wilkinson & Friendly, 2009) to study the temporal trends of the 
more interesting behavior patterns, and compare the trends across groups of students. The results in 
this paper and others (e.g., Biswas, Kinnebrew, & Segedy, 2013) represent a post hoc analysis of 
student behaviors, and it helps us evaluate the effectiveness of the feedback that Mr. Davis provides 
students to help them become more effective learners. Our longer term goal is to use the results of 
these analyses to track students’ cognitive and metacognitive processes and measure the proficiency 
of their use as they work on their learning and problem-solving tasks. These results will help us 
develop better adaptive scaffolding mechanisms to support student learning. 
 
2. Background: Metacognition 
 
Metacognition is described as being made up of two constituent parts (Flavell et al, 1985; Veenman, 
2012): (1) Metacognitive knowledge, which deals with awareness in the form of interplay between 
knowledge of one’s abilities to perform tasks, the nature of the task, and the strategies one can employ 
to successfully perform the task; and (2) Metacognitive control, which includes activities related to 
goal selection, planning, monitoring, and evaluating one’s cognitive processes in order to better 
regulate those processes in the future. Researchers have established strong links between learners’ 
metacognitive abilities and their effectiveness in executing cognitive processes. For example, Winne 
(1996) characterizes cognition as dealing with knowledge of objects and operations on objects (the 
object level). Metacognition, on the other hand, corresponds to the meta-level that contains 
information about cognitive processes. Metacognitive monitoring brings the two levels together, as it 
describes the process of observing one’s own execution of cognitive processes at the object level and 
exerting control over the object level using metacognitive knowledge and strategies. 

An important implication of the interplay between cognition and metacognition relates to the 
dependence of metacognition on cognition (Land, 2000). In other words, metacognitive knowledge 
may not be sufficient for achieving success in learning and problem solving, especially for learners 
who lack the cognitive skills and background knowledge necessary for interpreting, understanding, 
and organizing critical aspects of the task at hand (Bransford, Brown, & Cocking, 2000). Learners 
may also lack knowledge of effective strategies (e.g., the ability to extract relevant information when 
reading a science text), and, therefore, resort to suboptimal strategies in performing their tasks 
(Azevedo, 2005; Kinnebrew & Biswas, 2012). Poor self-judgment abilities result in difficulties for 
monitoring and evaluating one’s own effectiveness and progress, which can be a significant stumbling 
block in selecting and implementing relevant strategies in a timely manner. However, research studies 
have shown that with proper scaffolding, middle school students can improve their metacognitive 
awareness and develop effective metacognitive strategies (Kramarski & Mevarech, 2003). Recent 
results in Segedy, et al. (2013) also demonstrate that providing students’ support in becoming more 
proficient in the cognitive processes when they need it, improves their overall effectiveness in the 
Betty’s Brain system. Furthermore, we believe that developing the relevant cognitive skills will help  
students interpret and apply metacognitive strategies in a more effective manner.  
 
3. Betty’s Brain 
 
Betty’s Brain (Figure 1) is an open-ended learning environment (Land, 2000) that provides students 
with a learning context and a set of tools for pursuing authentic and complex learning tasks. Students 
explicitly teach Betty by constructing a causal map. For example, they may draw a causal link 
between garbage and landfills and methane to represent the relationship garbage and landfills 
increase methane (a greenhouse gas). Students can check what Betty knows by asking her questions, 
e.g., if garbage and landfills decrease, what effect does it have on polar sea ice? To answer questions, 
Betty uses qualitative reasoning that operates through chains of links from the source concept to the 
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target concept (Leelawong & Biswas, 2008). The learner can further probe Betty’s understanding by 
asking her to explain her answers. Betty illustrates her reasoning by explaining her thinking and 
highlighting concepts and links on the map as she mentions them. The goal for students using Betty’s 
Brain is to teach Betty a causal map, whose correctness is determined in relation to a hidden, expert 
causal map. 

Therefore, students’ learning and teaching tasks are organized around three activities: (1) 
reading hypertext resources to learn the domain material, (2) building and refining a causal map, 
which captures the domain model, and (3) asking Betty to take quizzes. Students explicitly teach Betty 

by constructing a causal map.  The map building and quiz interfaces for the system are shown in 
Figure 1. 

Learners can assess their progress by having Betty take a quiz on one or all of the sub-topics 
that make up the causal map. Quiz questions are selected dynamically to reflect the current state of the 
student’s map; questions are chosen (in proportion to the completeness of the map) for which Betty 
will generate correct answers. The remaining questions produce incorrect or incomplete answers and 
they direct the student’s attention to erroneous and missing links, respectively. After Betty takes a 
quiz, her results, including the causal map she used to answer the questions appear on the screen as 
shown in Figure 1(b). The quiz questions, Betty’s answer, and the Mentor’s assigned grade, i.e., 
correct, correct but incomplete, or incorrect appear on the top of the window. Clicking on a question 
will highlight the causal links that Betty used to answer that question. To help students keep track of 
correct and incorrect links, the system allows students to annotate them with a green check-mark 
(correct), a red X (incorrect), or a gray question mark (not sure). 

 
3.1 Cognitive/Metacognitive Process Model  
 
We have developed a systematic approach to interpret students learning behaviors on the system. The 
model takes into account the close connection between the cognitive and metacognitive processes, 
and represents our expectations of the skills and strategies students need to develop to address the 
learning task effectively. Overall, this model, shown in Figure 2, includes three primary processes that 

Figure 1: Betty’s Brain: (a) Map Editing Interface; (b) Quiz interface 

OELE
Tasks

Solution
Construction

Information
Seeking

Solution
Assessment

Identifying 
Information

Evaluating
Relevance

Convert Read 
Info to 

Causal Relation

Add/Change/Delete
Causal Info 
From Map

Probing
Links

Checking
Map

Interpreting 
what was

Read
Identifying 
by Reading

Use Assessment  
Info to 

Modify map

Interpreting 
Quiz 

Results

Interpreting 
Explanation 

Structure

Metacognitive Strategies

Cognitive Processes

Map Editing
Interface

Quiz Interface
with

Link Annotation

Resource
Interface

Knowledge
Construction Monitoring

System Tools

Figure 2: Cognitive/Metacognitive Task Model 



64 
 

students are expected to engage in while using Betty’s Brain: (1) information seeking, i.e., 
determining when and how to locate needed information in the resources, (2) solution construction, 
i.e., organizing one’s developing understanding of the domain knowledge into structural components 
(e.g., causal links), and (3) solution assessment, i.e., assessing the correctness of one’s causal model. 
(1) and (2) together represent strategies linked to Knowledge Construction (KC), whereas (3) pertains 
to strategies related to Monitoring (Mon). In executing metacognitive strategies, learners have to 
correctly execute related cognitive processes to be successful. Identifying information, for example, 
requires students to locate sentences that contain causal information as they read the resources and 
make sense of the content. Similarly, solution construction includes strategies for converting the 
acquired information into causal links and adding them to the appropriate place in the causal map. 

Solution Assessment includes strategies for (1) checking the causal map, i.e., assessing the 
correctness of all or a part of the causal model, and (2) interpreting explanation structure, i.e., using 
the explanations to explicitly identify and annotate parts of the causal model as correct or incorrect. 
This makes it easier for the student to focus on parts of the map that need more work. Successful 
execution of monitoring metacognitive processes relies on students’ abilities to execute cognitive 
processes for assessing the causal model (via questions, explanations, quizzes, and question 
evaluations) and recording progress (via note taking and annotating links with correctness 
information). The cognitive and metacognitive process model provides a framework for interpreting 
students learning activities and behaviors (activity sequences) on the system. 

 
3.2 Measuring Cognition and Metacognition 
 
We have developed sequence mining methods for analyzing students’ learning activity sequences and 
assessing their learning processes as they work in Betty’s Brain (Kinnebrew, Loretz, & Biswas, 2013, 
Segedy, Biswas, & Sulcer, 2013). In this paper, we extend this analysis and demonstrate the use of 
information gain measures and visualization methods to show how student behaviors evolve during 
the course of the intervention. In particular, we are interested in studying (1) whether students are able 
to interpret and apply KC and Mon strategies, and (2) whether this results in students’ suboptimal 
behaviors gradually evolving into the use of more optimal strategies as the intervention progresses. 

To assess the effectiveness of students’ activities we calculate four measures: (1) map edit 
effectiveness, (2) map edit support, (3) monitoring effectiveness, and (4) monitoring support. Map 
edit effectiveness is calculated as the percentage of causal link additions, removals, and modifications 
that improve Betty’s causal map. Map edit support is defined as the percentage of causal map edits 
that are supported by previous reading of pages in the resources that discuss the concepts connected 
by the manipulated causal link. Monitoring effectiveness is calculated as the percentage of question 
evaluations, quizzes, and explanations that generate specific correctness information about one or 
more causal links. For example, when Betty answers a quiz question correctly, all of the links she 
used to generate her answer are also correct. When students view the links Betty used to answer a 
correct question, they generate correctness information for each link (i.e., each link Betty used to 
answer the question is correct). Finally, monitoring support is defined as the percentage of causal link 
annotations that are supported by previous quiz questions and explanations. For support metrics, a 
further constraint is added: an action can only support another action if both actions occur within the 
same time window, and we calculated support for a ten minute time window. 

The information for calculating the measures and deriving student behavior using sequence 
mining is extracted from students’ activities on the system collected in log files. For example, if a 
student accesses a page in the resources, this is logged as a Read action that includes additional 
information, e.g., the page accessed. In this work, students’ activity sequences are defined by six 
categories of actions: (1) Read, (2) Link Edit, (3) Query, (4) Quiz, (5) Explanation, and (6) Link 
Annotation. Actions are further distinguished by contextual details, such as the subtopic associated 
with the link, and the correctness of the link edited. Sequence mining techniques are applied to 
discover frequent behavior patterns for students in a given group are described in detail elsewhere, 
and not discussed in this paper (Biswas, Kinnebrew, & Segedy, 2013; Kinnebrew, Loretz, & Biswas, 
2013; Kinnebrew & Biswas, 2012).  
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4. Method 
 
We present post-hoc analyses from a 2012 classroom study with Betty’s Brain in which 7th grade 
students in a middle Tennessee school learned about the greenhouse effect and climate change. The 
analysis that follows tests the effectiveness of two sets support modules designed to scaffold students’ 
understanding of cognitive skills and metacognitive strategies important for success in Betty’s Brain: 
(1) Knowledge Construction (KC) and Monitoring (Mon). The KC module provided support for 
information seeking and solution construction, and the Mon module helped students understand how 
to use Betty’s quizzes to identify correct and incorrect links on the causal map. Participants were 
divided into three treatment groups. The KC group (KC-G) used a version of Betty’s Brain that 
included the KC support module and a causal link tutorial that they could access at any time in the 
system. The tutorial allowed students to practice identifying causal relations in short text passages. 
The Mon group (Mon-G) used a version of Betty’s Brain that included the Mon support module and a 
marking links correct tutorial that they could access at any time in the system. The tutorial presented 
practice problems in which students used the results of graded quiz questions and the related causal 
map to identify the links that could be marked as correct. Finally, the control group (Con-G) used a 
version of Betty’s Brain that included neither the tutorials nor the support modules. 

The KC module was activated when three out of a student’s last five map edits were incorrect, 
at which point Mr. Davis would begin suggesting strategies for identifying causal links during 
reading. Should students continue to make incorrect map edits despite this feedback, the KC module 
activated a second tier of support: guided practice. During guided practice, students were moved to 
the causal link tutorial where they read short text passages and expressed the primary idea in the 
passage as a causal relation. When they worked on the tutorial, students were not permitted to access 
any other portion of the program. Students completed the tutorial session once they solved five 
problems correctly without making a mistake.  

The Mon module was activated after the third time students did not use evidence from quizzes 
and explanations to annotate links on their map. At this time, Mr. Davis began suggesting strategies 
for using quizzes and explanations to identify and keep track of which links were correct. 
Additionally, Mr. Davis discouraged students from annotating links as being correct without using the 
suggested strategies. Should students continue to use quizzes and explanations without annotating 
links correctly, the Mon module provided students with guided practice. Like the KC tutorial, students 
had to complete five problems correctly on the first try to complete the tutorial session. 

Seventy-three students, taught by the same teacher, participated in the study. Because use of 
Betty’s Brain relies on students’ ability to independently read and understand the resources, the 
system is not suited to students with limited English proficiency or cognitive-behavioral problems. 
Therefore, data from English as a Second Language (ESL) and special education students were not 
analyzed. Similarly, we excluded the data of students who missed more than two class periods of 
work on the system. Our experimental analysis used data collected from 52 students who participated 
in the study, with 15 students in the Con-G condition, 20 students in the KC-G condition, and 17 
students in the Mon-G condition. 

Learning was assessed using a pre-posttest design. Each written test consisted of five 
questions that asked students to consider a given scenario and explain its causal impact on climate 
change. Scoring was based on the causal relations that students used to explain their answers to the 
questions, which were then compared to the chain of causal relations used to derive the answer from 
the expert map. One point was awarded for each causal relationship in the student’s answer that came 
from or was closely related to an expert causal link. The maximum combined score for the five 
questions was 16. Two coders independently scored a subset of the pre- and post-tests with at least 
85% agreement, at which point the coders split the remaining tests and individually coded the answers 
and computed the scores. 

Performance on the system was assessed by calculating a score for the causal map that 
students created while teaching Betty. This score was computed as the number of correct links (the 
links in the student’s map that appeared in the expert map) minus the number of incorrect links in the 
student’s final map. We also used the log data collected from the system to derive students’ behavior 
patterns, interpret them using our cognitive/metacognitive model, and study the temporal evolution of 
the observed KC and Mon strategies over the period of the intervention. 
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5. Results 
 
Repeated measures ANOVAs performed on the pre- to post-test gains revealed a significant effect of 
time on test scores (F=28.66, p <0.001). Pairwise comparisons of the three groups revealed that the 
Mon-G (learning gain mean (m) = 2.41, standard deviation (sd) = 1.92) had marginally better learning 
gains than KC-G (m = 1.28, sd = 2.33), which had better learning gains than the Con-G students (m = 
1.03, sd = 1.99). The Mon-G learning gains were better than the Con-G gains (p < .075), indicating 
the two interventions may have resulted in better understanding of the science content. There was 
virtually no difference in the final map scores between the three groups. The small sample size and 
the large variations in performance within groups made it difficult to achieve statistical significance in 
these results. However, one positive aspect of this finding is that while students in the Mon-G and 
KC-G spent an average of 10% and 17% of their time in guided practice, respectively, they learned, 
on average, just as much, if not more, than the Con-G students. 

We assessed students’ overall behaviors using the effectiveness and support measures 
reported in section 3.2. The results in Table 1 show that the KC-G students had the highest scores on 
both map editing effectiveness and support, suggesting that the KC feedback did help students more 
effectively and systematically read and construct their causal maps (however, only the map edit 
support showed a statistically significant difference, KC-G > Con-G, p = 0.02, and the map edit 
effectiveness illustrated a trend, KC-G > Con-G, p = 0.08). However, the monitoring feedback did not 
help the Mon-G students do better than the other two groups for monitoring effectiveness or support. 
The Mon-G students did have the highest monitoring effectiveness, but the differences were not 
statistically significant. The Con-G students had the highest monitoring support average (p < 0.10, 
when comparing with other groups). It is not clear why the Mon or KC support and tutorials resulted 
in students performing less supported monitoring activities than the Con-G students. 

 
Table 9: Effectiveness & Support Measures ((mean (std dev)) by Group 

Measure Con-G KC-G Mon-G 
Map edit effectiveness 0.46 (0.13) 0.52 (0.07) 0.50 (0.12) 
Map edit support 0.43 (0.25) 0.64 (0.19) 0.55 (0.23) 
Monitoring effectiveness 0.30 (0.22) 0.32 (0.21) 0.40 (0.20) 
Monitoring support 0.61 (0.30) 0.32 (0.40) 0.33 (0.32) 

 
6. Temporal Evolution of Behaviors 
 
We developed an approach for studying how students' learning behaviors and strategies evolve over 
time as the result of the scaffolds and feedback provided by the learning environment or the changing 
demands of the task over the course of learning. We have developed a methodology called the 
Temporal Interestingness of Patterns in Sequences (TIPS) along with a corresponding interestingness 
measure, for identifying and visualizing the most temporally-interesting patterns of student behavior 
(Kinnebrew, Mack, & Biswas, 2013).  

To characterize the temporal evolution of pattern use, we sliced each student’s sequence into a 
given number of bins and aggregated the pattern use frequencies for corresponding bins over a group 
of students using the following approach:  

1. Map the patterns back to the individual student activity sequences with occurrence frequency 
over the length of the sequence. This is performed by slicing each sequence into n bins, such 
that each bin contains approximately (100/n) % of the student’s actions in the sequence. Since 
corresponding bins for different students can be of different sizes (i.e., the number of actions 
in the bin) depending on the total number of actions the student performed, the frequency of a 
pattern in a bin is calculated as the number of occurrences divided by the size of the bin;  

2. Compute the group frequency of the patterns for each bin as the average across all students in 
the group, and normalize the frequency counts as percentages to provide a standard basis for 
comparison across groups. The percentages allow direct comparison across groups in terms of 
the evolution of pattern use, even with different total frequencies for pattern use in the groups; 
and  
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3.  Form a pattern vector for each group by considering each behavior pattern to be defined by a 
vector consisting of n feature values, where each feature value corresponds to the percentage 
frequency count for the corresponding bin. 

4. Provide a ranking of the candidate patterns using Information gain (IG) as an interestingness 
measure applied to the temporal footprint of each pattern. IG is defined as the difference in 
expected information entropy between one state and another state where some additional 
information is known (e.g., a set of data points considered as a homogeneous group versus 
one split into multiple groups based on the value of some other feature or attribute). In TIPS 
we apply IG to determine which patterns are the best descriptors of the data because 
knowledge of their occurrence provides the least amount of uncertainty about the temporal 
location of actions in the sequences. This IG measure for a pattern defines its temporal-
interestingness in TIPS and is used to rank all candidate patterns in descending order, so the 
pattern that has the highest information gain will be ranked first. 

5. For the highly-ranked patterns, visualize their temporal footprints using heat maps (Wilkinson 
& Friendly, 2009) to assess usage trends and spikes. Specifically, we employ a single-
dimensional heat map where each temporal bin's value is its percentage of the total pattern 
occurrence. The heat map is generated by assigning a color to each bin, which is determined 
by where its value falls between the highest and lowest value in the heat map. 
 
As an initial analysis of student learning behaviors, we ran the students’ activity data through 

a sequence mining algorithm (Kinnebrew, Loretz, & Biswas, 2013). This algorithm identified 143 
different action patterns that were observed in a majority of students. We ran our binning method on 
all 143 patterns to divide up the activity sequences into 5 bins, such that each bin contained about 
20% of the students’ actions in the learning environment. The TIPS algorithm (Kinnebrew, Mack, & 
Biswas, 2013) was then run on the 143 patterns, and the top four distinct behavior patterns ranked by 
IG are listed in Table 2. Patterns 1 and 2 can be classified more as KC strategies, and not surprisingly 
the KC group has the highest average frequency of use for these strategies. Similarly, patterns 3 and 4 
involve interpretation and further probing into Quiz results, respectively, and, therefore, they may be 
classified as Mon strategies. Mon-G has a marginally greater frequency of use of these two strategies 
than the KC-G; however, the CON-G students show the highest average frequency of use for these 
strategies. When one looks at these results in conjunction with monitoring effectiveness, the MON-G 
students do have a higher value for that measure as compared to the other two groups. Surprisingly, 
however, the CON-G students had a much higher score than the Mon-G and KC-G students for the 
monitoring support measure. However, it is interesting to note that this did not translate to higher map 
scores and better pre-post test gains for this group. 

 
Table 2: Comparison of Pattern Frequencies across Conditions for highest ranked TIPS patterns 

Rank Pattern 
Avg. Frequency 

CON KC MON 
1 [Add incorrect link (AIL)] → [Remove incorrect link (RIL)] → [Read (R)] 1.4 5.0 0.9 
2 [Read Multiple Pages(R-M)] → [Add incorrect link (AIL)] 1.7 5.0 1.9 
3 [Add incorrect link (AIL)] → [Quiz (Q)] → [Remove incorrect link (RIL)] 5.3 4.2 4.3 
4 [Quiz (Q)] → [Explanation (E)] 7.6 3.2 4.5 

 
While these broad category differences in pattern use among students suggests that the 

expected effects on student learning behaviors for the two experimental conditions, the heat maps 
provide a visual comparison of the temporal evolution of individual activity patterns across 
conditions. Figure 3 illustrates the temporal evolution of the four behavior patterns listed in Table 2. 
In the heat maps, the lighter shades imply a lower frequency of occurrence for that pattern in a bin, 
and the darker shades imply higher frequencies of occurrence. The legend colored white denotes the 
lowest frequency of occurrence in that heat map expressed as a percentage of total occurrence for the 
corresponding group, whereas the legend shaded black denotes the highest percentage frequency of 
occurrence in the heat map.  

Pattern 1: AIL → RIL → R, very likely represents a justifiably cautious strategy, where the 
student added a link then correctly surmised that the link was incorrect. It was not clear if this was a 
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guess or the student used past information (e.g., a previous quiz result) to come to this conclusion. In 
any case, the student then decided to read the resources further, presumably to find the right link. The 
KC-G students used this pattern with much greater frequency that the Con-G and Mon-G students and 
the pattern use was uniformly distributed through the period of the intervention. For the Con-G 
students the use of this pattern increased monotonically through most of the intervention, but 
dramatically dropped off for the last bin. The Mon-G students use this pattern sporadically (their 

average frequency of use in the intervention was < 1), but the pattern’s use peaked in the middle of 
the intervention.  

Pattern 2: R−M → AIL, represents a suboptimal behavior, where students read multiple pages 
then added an incorrect link to the map. Though the KC-G students did this most often, Figure 3 
shows that this behavior decreased in frequency for the KC-G students as the intervention progressed. 
The frequency of use of this pattern for Mon-G and Con-G groups was roughly the same. But the 
Con-G students’ use of this pattern decreased with time, whereas for the Mon-G students the 
frequency of use was more uniform with a small increase at the end. 

Pattern 3: AIL → Q → RIL represented a strategy where a student added an incorrect link and 
then took a quiz to see how the score would change. Depending on the outcome (in this case, the score 
likely decreased), the student determines that the link added was incorrect, and, therefore, deleted it. 
This generally represents a suboptimal trial-and-error strategy. Students in all three groups used this 
strategy, but the Mon-G and KC-G students used it less than the Con-G students. This may be 
attributable to the effectiveness of the Monitoring scaffolding. To study this pattern further we 
developed two pattern-specific measures: (1) a measure of cohesiveness of the pattern, i.e., in what 
percentage of the AIL → Q → RIL patterns was the delete action supported by the quiz result; and (2) 
a support measure, i.e., in what percentage of the AIL → Q → RIL patterns was the addition of the 
link supported by recent actions. The MON group had higher cohesiveness (41.9 to 38.0 and 37.3 for 
the CON and KC groups) and higher support (27.7 to 20.3 and 18.7 for the CON and KC groups) 
measures, implying that when they employed this pattern, they did so in a more systematic way than 
the other two groups.   

  Pattern 4: Q → E represents a good monitoring strategy, where the students use the 
explanation feature to identify the links Betty used in answering a question that appeared on the quiz. 
The Mon-G feedback provided by Mr. Davis emphasized the use of this approach to identify the 
correct versus incorrect links in their maps. The feedback had a positive effect. The Mon-G students 
used this feedback more frequently than the KC-G students, and the frequency of use increased as the 
intervention progressed for these groups. This can be attributed to the fact that the explanation feature 
becomes more useful as the size of the causal map grows. However, it was surprising that the Con-G 
students used the explanation feature with higher frequency than the other two groups, but their use of 

(1) AIL → RIL → R

(4) Q → E(3) AIL → Q → RIL

(2) R-M → AIL

Figure 3: Temporal Evolution of Behavior Patterns
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this behavior occurred more at the beginning and end of the intervention, with very little use in 
between. Perhaps, feedback from the Mentor would have led to greater use, and better map scores for 
the Con-G students. 

 
7. Discussion and Conclusions 
 
The results presented in Sections 5 and 6 provide evidence that a combination of theory-driven 
measures and data-driven mining techniques can be successfully employed to produce a more 
complete description of the type of metacognitive strategies students use and their effectiveness in 
their learning and problem-solving tasks. Furthermore, the temporal interestingness measures and the 
heat map visualization help us study how these behaviors evolve during the intervention. In this work 
on investigating cognitive and metacognitive processes in Betty’s Brain, we had to carefully 
instrument the system to collect rich data on the students’ activities and the context associated with 
those activities. Post hoc mining and analysis of this data revealed a number of interesting results. 
More generally, and perhaps most important, the results show (i) that it is possible to infer aspects of 
students’ use of strategies through these data mining and analysis techniques combined with a 
cognitive/metacognitive model of the task, and (ii) that tracking student performance and related 
context information with respect to their activities allows us to better characterize how students’ use 
of these strategies evolve, and how effective is the scaffolding provided by the system. 

 Our analyses in this study focused on students’ information seeking, solution construction, 
and solution assessment strategies. Knowledge construction (KC) strategies include seeking out 
information, thinking deeply about the material to develop a sufficient understanding to apply it to 
model-building and problem-solving tasks. In particular, information structuring strategies in Betty’s 
Brain help students with their map-building activities, which include understanding the structure of 
the causal model, the ability to construct it in parts, the ability to add links correctly to an existing 
structure, and also the ability to reason (e.g., answer questions, formulate hypotheses) with the 
evolving structure. The primary monitoring strategies relate to determining when and how to check 
the correctness of the current causal map, and then, in more detail, using the quiz (assessment) results 
to determine the correctness of individual links and identify parts of the map that are incomplete or 
still need work.  

In summary, the analysis presented in this paper successfully employed our metacognition 
measurement framework to evaluate the effects of scaffolding support for metacognitive and cognitive 
processes important for success in Betty’s Brain. Comparison of different versions of Betty’s Brain, a 
version that provided very little scaffolding and no guided practice versus two experimental 
conditions: one that provided Knowledge Construction scaffolds and a second that provided 
Monitoring scaffolds, produced interesting results. Overall, the interventions resulted in changes in 
student behavior that were consistent with the provided scaffolding, implying that these metacognitive 
strategies can be taught and supported for middle school students in a computer-based learning 
environments. In more detail, the KC group tended to use KC strategies more often than the other two 
groups, but this was not true for students in the Mon group, who did not use monitoring strategies 
more often than the other two groups (see Table 2 and Figure 3). Furthermore, when we analyzed the 
temporal evolution of two monitoring-related behaviors, the positive result was that the Mon-G 
students applied the Q → AIL → Q pattern more effectively than a trial and error strategy as 
compared to the other two groups. Their use of this behavior pattern only increased toward the end, 
when the map building task became more difficult. In subsequent versions of the system, we may 
monitor the use of this behavior more closely, and provide students help with alternate strategies that 
are likely to be more effective in helping them complete their causal map. There were less distinct 
differences in the use of explanations after a quiz. All students used the explanation feature more 
often toward the end. To promote more uniform and effective use of explanations throughout the 
interventions, we will develop new feedback that better explain how to interpret quiz results and the 
role of explanations in probing the correctness of links used to answer questions (e.g., how to use the 
results from multiple quiz questions). 

Further improvements in the scaffolding and feedback on solution construction and solution 
assessment strategies provided by the environment and creating repeated opportunities for students to 
practice them should lead to better science learning performance. An interesting implication of this 
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work is that solution assessment strategies can be the key to better learning performance as well as 
prove to be the catalyst for developing more effective information seeking and solution construction 
strategies. The results presented in this paper are promising, but further analysis and more systematic 
experiments will have to be conducted to achieve conclusive results. 
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