
T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education

Robo-Blocks: A Tangible Programming

System with Debugging for Children

Nussarin NUSEN, Arnan SIPITAKIAT

Department of Computer Engineering, Chiang Mai University, Thailand

arnans@eng.cmu.ac.th

Abstract: This paper presents a tangible programming system called Robo-Blocks. The

system consists of electronic command blocks that can be connected together to form a

program that controls the movement of a floor robot. The basis of the design is to make

programming accessible to young children. Robo-Blocks adds the ability to debug a tangible

program by allowing children to step through each instruction and observe the resulting

action. We present case studies that demonstrate how the step-by-step operation can help

children to better analyze and debug the robot’s action when the outcome is different from

their expectations.

Keywords: tangible interface, programming, debugging, robotics

Introduction

Tangible programming is an emerging field that has captured the attention of many

researchers. The premise of this area is that tangible interfaces or digital-manipulatives can

make programming more accessible to small children. Although there have been a number

of on-screen programming environments, such as Logo [2] and Scratch[5], that were

designed especially for children, programming in the traditional sense requires the ability to

map the on-screen symbolic representation to the actions it produces. This abstraction level

can be alienating to young children (and many adults as well). Tangible programming

reduces this mental gap by carrying out the programming action through the act of

manipulating tangible objects. Tangible programming is, thus, an expression method that

taps into the child’s existing experience of the physical world. This work presents a tangible

programming system called Robo-Blocks. Our main objective is to investigate how to

facilitate “debugging”: a core activity in programming that engages children in problem

solving [2]. Using Robo-Blocks, children with ages of five to eight snap together a series of

acrylic command blocks to control a robot that can move around the floor, as shown in

Figure 1. There is no need to use a computer in this process.

1. Tangible Programming

There are two main threads of tangible programming environments: implicit and explicit.

Implicit programming embeds the programming action within the target object. Topobo [4]

embraces a “record and play” paradigm by creating “kinetic memory” to each piece of a

specially designed robotic construction kit. Topobo allows children to create kinetic

structures by manipulating the physical structure itself.

ICCE2011 | 728

T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education

Figure 1: Robo-Blocks consists of command blocks connected to a master block which

interprets the program and wirelessly sends the commands to the floor robot.

This research focuses more on explicit tangible programming, which offers a separation

between the programming logic and the programmed object. There is a set of tangible

objects or blocks that represents primitives of a computer program, which then get

translated into actions controlling a separate physical object. The Button Box [3] developed

by Radia Perlman at the MIT Logo Lab in the mid-1970s is most likely the first example of

this paradigm. The system was design to control a “floor turtle”, a robot that moves around

with a pen attached. Perlman later developed the Slot Machine [3], which was conceptually

a significant step forward from the Button Box. Instead of buttons, plastic cards were used

to represent the possible turtle actions. Children can place many cards onto racks, thus

creating a command sequence. The cards used with the Slot Machine provided a much more

concrete way for children to think about and, more importantly, alter their program. In

essence, the Slot Machine gave a way for children to become involved with “debugging”:

one of the most important cognitive activities in learning through programming.

More recent research projects that follow this path includes Tern [1], which allows children

to program a moving robot by putting together wooden blocks each representing a robot

command. A camera then interprets the block sequence and tells the robot to execute the

command sequence.

However, despite the increase research interest on tangible programming, we were surprised

to discover that very little attention has been given on further improving the debugging

process. In fact, the Slot Machine from 1976 remains the best example of how debugging

can be implemented!

2. Programming and Debugging with Robo-Blocks

The Robo Blocks system consists of acrylic boxes embedded with a custom designed

micro-controller circuit. Each block represents a command that can be used to control the

floor robot. They each have a set of magnetic connectors both on the top and bottom sides

allowing children to easily snap the blocks together creating a command chain.

Floor Robot

Command Blocks

Master Block

ICCE2011 | 729

T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education

Block Name Description

Movement Blocks

Forward Moves the robot forward

Backward Moves the robot backward (without changing its heading)

Left turn Turns the robot to the left

Right turn Turns the robot to the right

Pen commands

Pen down Puts the pen down causing the robot to leave a trail when it moves

Pen up Retracts the pen, preventing it from leaving any trails

Auxiliary commands

Beep Tells the robot to beep

Table 1: A list of command blocks used in this work

The movement blocks feature a built-in screen showing a number ranging from 0 to 99.

Children can turn a knob on the side of the block to change this value. The value determines

the amount of time a movement block performs the action.

The command blocks must be attached to a master block. This master block automatically

discovers the number of blocks, the type of each block, and the sequence of the blocks. The

master block then sends the commands to the floor robot over a wireless communication

link.

The floor robot was built using Lego Bricks, except for the pen levitation control

mechanism where a custom designed mechanical structure was used. The robot’s movement

is controlled using a GoGo Board, an open robotics platform for children [6]. The GoGo

Board was selected because of its simplicity and it supports wireless communication.

Robo-Blocks allows children to debug their program through the step-by-step button on the

master block. When something goes wrong or happens unexpectedly, children can choose to

analyze the situation by executing one command at a time.

3. Evaluation

Twelve students with ages between five and eight years old participated in the evaluation

process. There were five males and seven females. None of these students had any prior

programming background. Six students worked in groups of two. Thus, a total of nine cases

were performed. Each case lasted approximately two hours.

There were two activities designed for this experiment. (A) Solving a Maze. After a brief

introduction of Robo-Blocks, students were challenged to put together a program (sequence

of blocks) that would guide the robot through a given path. The condition was that the robot

must reach the destination without touching the rim of the path. A straight line was used as

an introductory path followed by an “L” path and a slightly more difficult “U” shaped path.

(B) Turtle Geometry. This is the same activity introduced by earlier works such as the

Button Box and the Curlybot described earlier where students program a robot to draw

geometrical shapes on the floor. Students learn to use the “pen-down” and “pen-up”

command blocks that determine whether or not the robot leaves a trail as it moves. The

researcher then challenges the student to draw simple shapes such as a triangle and a square.

Data used in the analysis of this research were collected from three main sources. First, all

the cases were recorded on video. The footage was extensively used to analyze the common

themes among participants. All students were interviewed with questions that indicated how

well they understood what they were doing and how they felt about the tools they were

using. Lastly, the researchers kept a journal of each case study that reflected the important

events that were observed.

ICCE2011 | 730

T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education

4. Findings

4.1 Usability and Engagement

All the participating students were clearly attracted by the design and use of Robo-Blocks.

Few students were slightly intimidated initially by the robot. The hesitation disappeared

after understanding what Robo-Blocks can do. The affect of pressing the run button and

seeing the robot move was clear (see figure 2). Given that none of the students had prior

exposure to robotics, this new experience is both exciting and engaging.

Figure 2: Images of students interacting with the Robo-Blocks system

Students were able to understand the function of the dial located on the action blocks. For

example, every student was comfortable with the concept of changing the value on a

“MOVE-FORWARED” block to determine how far the robot should move. Students

understood that if they want the robot to move forward and then return back to the starting

point they need to make sure the numbers on the “MOVE-FORWARED” and the

“MOVE-BACKWARDS” blocks are equal. Thus, the concept of a “command parameter”

was simple and comprehensible.

4.2 Step-by-Step and Debugging

When a program executes, the student usually pays attention to the robot more than the

blocks. The robot action is fast and students can easily lose track of what block the robot is

running. This is when the step-by-step ability became useful. Each time the student pressed

the “Step” button, one block was executed. This controllable behavior helped students to

better synchronize their thinking with the actual program being executed.

We have also found that the ability to step through instructions can help with debugging.

This observation was clearly seen when two students were trying to draw a triangle. The

desired action was for the robot to “MOVE FORWARD”, “TURN LEFT”, “MOVE

FORWARD”, “TURN LEFT”, and “MOVE FORWARD” (See figure 4). But they

incorrectly used a “TURN RIGHT” block on the second turn. Thus, the result was a zigzag

shape instead of a triangle. At that time, once the robot started moving, the students could

not pin point which block was causing the problem. But the cause became apparent once

they stepped through the code one block at a time.

We have observed the use of step-by-step as means for slowing down the execution and/or

debugging an error in six out of the nine cases we have conducted. Students in the remaining

three cases who did not use the stepping feature preferred to rely on their observations and

the effect of replacing blocks to proceed with their work. This later group accomplished less

work than the former. Among the three groups that did not use the step-by-step function,

ICCE2011 | 731

T. Hirashima et al. (Eds.) (2011). Proceedings of the 19th International Conference on Computers in

Education. Chiang Mai, Thailand: Asia-Pacific Society for Computers in Education

two were not able to finish drawing the shapes in activity (B). On the other hand, only one of

the six cases that used step-by-step did not finish the activity.

Figure 4: The left column shows the incorrect triangle program and the zigzag result. The

right colum shows the corrected program, which was assisted by utilizing the step-by-step

feature.

5. Conclusions

This work has contributed to the field of tangible programming by demonstrating how

debugging can be designed and implemented. Robo-Blocks is a tangible programming

framework that offers a step-by-step feature to run one instruction at a time. We have

showed how students appreciate this ability and how it can play an important role in the

learning process. Thus, we believe debugging abilities should be considered seriously when

designing any tangible system for children. Other debugging concepts such as break-points

and variable watchers could be explored with more sophisticated programs.

References

[1] Horn, M., Solovey, E. T., Jacob, R.J.K. (2008). Tangible Programming and Informal Science Learning:

Making TUIs Work for Museums, In Proc. IDC 2008 Conference on Interaction Design for Children.

[2] Papert, S. (1980/1993). Mindstorms: Children, computers, and powerful ideas (1st and 2nd ed.).

Cambridge, MA: Basic Books.

[3] Perlman R (1976) Using computer technology to provide a creative learning environment for preschool

children. Logo memo no 24, MIT Artificial Intelligence Laboratory Publications 260, Cambridge,

Massachusetts, USA.

[4] Raffle, H. S., Parkes, A. J., & Ishii, H. (2004). Topobo: a constructive assembly system with kinetic

memory. In Proceedings of the SIGCHI conference on Human factors in computing systems

(pp. 647–654). Vienna, Austria: ACM.

[5] Resnick, M. , Maloney ,J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, M.,

Rosenbaum, E., Silver, J., Silverman, B., Kafai,Y. (2009). Scratch: programming for all.

Communications of the ACM, 52(11), 60–67.

[6] Sipitakiat, A., Blikstein, P., & Cavallo, D. P. (2004). GoGo board: augmenting programmable bricks for

economically challenged audiences. In : ICLS ‘04, Proceedings of the 6th international conference on

Learning sciences (pp. 481-488). International Society of the Learning Sciences.

ICCE2011 | 732

