

Toward better Collaborative Problem-solving

in Programming Learning: Use of Pair

Programming and Its Observation

Yuki HIRAI
a*

 & Tomoo INOUE
a**

a
Graduate School of Library, Information and Media Studies, University of Tsukuba, Japan

*s0930522@u.tsukuba.ac.jp **inoue@slis.tsukuba.ac.jp

Abstract: , 1 < - 5 2 9 C - D - = = - < > < 1 3 < 5 7 7 9 0 3 2 - 5 < 0 9 0 3 B @ - / 5 A - 5 8 1 > = - 8 E > 5 9 < -> < 1 3 < 5 7 7 9 0 3 F
method to the introductory programming course of a university. Pair-programming is a

programming method that two persons get involved with a single programming task using a

single computer terminal, where only one person types the keyboard. Though there have

been several researches on pair-programming learning practice and been reported its

usefulness, only impressions were reported. Through the actual pair-programming practice,

we could observe both successful case and failed case in solving the problem that arose in

the course of completing the assigned task, and found that there seemed to be difference in

utterance patterns between the successful case and the failed case.

Keywords: Pair-programming, Programming learning, Problem-solving,

Computer-supported collaborative work (CSCW)

Introduction

The ability to understand the grammar of a programming language, to write a program, and

to assemble an algorithm, is required in programming education. When a learner actually

creates a program, some problems typically occur, even if the grammar and a (relatively

easy) example of the program language are understood [12]. In programming education,

numerous practices, including the support of problem-solving, have been developed to date.

Education and study methods have also received considerable attention [10]. G H � ! " $ I " & % % (� I % � � H $ � ' & J J � � K ! & (" -! " $ I " & % % (� I $ " (I (� & � � � (� (� � � � � " L & � & M � L
component of the Extreme Programming (XP) development methodology [1]. As the name

suggests, two programmers work together at the same machine while developing code. One

programmer (the driver) operates the keyboard and focuses on entering code, while the

other programmer (the navigator) observes the work of the driver and offers suggestions in

the code. The programmers regularly exchange roles. Creating a program by

pair-programming is collaborative work, and offers further benefits in respect of sharing

and enhancing programming expertise and refining collaborative technique [16]. In the

Computer-supported cooperative work (CSCW) context, interruptions of software teams

have been investigated [4], and studies have explored interruption patterns among software

developers who program in pairs versus those who program solo.

In some programming education, pair-programming has been conducted as one of the

programming learning methods. Especially in introductory programming courses, for

example, it has been reported that pair-programming is better than solo-programming in

respect of improving the quality of programming [6,7,8,11,15]. However, there were

numerous instances in which the pair-programming had faced the problem which

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

362

problem-solving did not go well. Of course, the effect of pair-programming varies with the

actual composition of the pairs, but failure on the part of one of the pair, in the introductory

stage, can easily spill over into later, more involved tasks. Moreover, if problem-solving

does not go well, a decrease in motivation to study will typically occur. In this case, we must

seek to support the pair, with a view to improving their pair-programming learning.

In this study, pair-programming was conducted in an introductory programming course.

Success and failure cases in pair-programming were compared. In the comparison, we

focused on the conversation between the pair in pair-programming. In the failure cases, it

was found that speech length tended to be long, and there might be a great deal of

continuous speech.

Our research objective in broader sense is to support programming learning. Pair

programming has been focused as one of the promising techniques of programming

learning. We do not intend to just using pair programming. We intend to expand pair

programming to computer-supported pair programming (CSPP). This means that a

computerized environment (not the computer used for programming basically) senses the

learning status of the pair, and once the environment senses something wrong with the pair it

intervenes in the learning. This could be a mixture of ICAI (Intelligent Computer-Aided

Instruction) and CSCL (Computer Supported Collaborative Learning) under the ubiquitous

computing technology. To realize such CSPP, we thought we need some symptoms to

indicate the status of pair programming. This led to the study in this paper.

1. Related Works

1.1 Pair-programming in an Introductory Programming Course

Previous research suggested that pair-programming was better than solo-programming in

numerous respects. For example, it was better in respect of the quality of program code

[6,7], the success rate in programming courses [7,8], results of mid-term or final

examinations [8], and/or submission rate of assignments [15]. Rountree et al. reported that

understanding and/or ability to create program code were improved after pair-programming

was conducted [11].

The aforementioned research reported the positive effects of pair-programming, but did not

analyze the process of pair-programming or the pairs whose problem-solving did not go

well. In this research, the conversations of some pairs in pair-programming were analyzed,

and specifically, pairs that failed in problem-solving were studied.

1.2 Communication Analysis in Pair-Programming

In previous research (which did not focus on introductory programming courses),

conversations of the pairs in pair-programming was analyzed. Chen et al. recorded the

utterance of pairs and described the context of pair-programming. They suggested that there

was a mental distance between the driver and the navigator, and communication supports

such as visualizing the rules of the pair were necessary [3]. Chong et al. also recorded the

utterance of pairs and described the context of pair-programming. They suggested that the

distribution of expertise among the members of a pair had a strong influence on the tenor of

pair-programming interaction, and keyboard control had an effect on decision-making

within the pair [5]. Bryant et al. investigated the distribution of utterance categories in

pair-programming, and suggested that there was no significant difference in the distribution

between the driver and navigator, and both driver and navigator work at similar levels of

abstraction [2].

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

363

These studies analyzed the conversation of pairs, but did not compare success and failure

cases in pair-programming. In this study, interactions between the driver and navigator have

been observed, communications in pair-programming have been analyzed, success and

failure cases have been compared, and the characteristics of failure cases have been studied.

1.3 Roles of Conversation in Pair-Programming

Wray [16] described the roles and effects of conversation in pair-programming from his

own experience. He mentioned that the roles of conversation were sharing expertise among

pairs and getting on the track for problem solving. He predicted that programmers who chat

about their programs more should be more productive and that those who pose deep

questions for each other should be most productive of all.

His description suggests that problems occurring in pair-programming might be solved

through conversation among pairs, and that conversation may be a significant indicator in

comparisons between success and failure cases in pair-programming. In the present study,

differences in conversation between success and failure cases in pair-programming were

explored.

2. Pair-Programming Practice

2.1 Practice Setting

In this study, pair-programming was conducted in an introductory programming course, � N " $ I " & % % (� I O � P Q H (' H � & " I � � � � # " � � H % � � (� � H � � � (R � " � (� L � � � ! & " � % � � � $ # (� # $ " % & � ($ � S
The goals of the course were as follows:

l Learners understand the description and composition of software and the mechanism of

programming.

l Learners can compile and execute a program written in C language.

l Learners understand the basis of C language, such as variables, control of flow,

functions, arrays, character and string handling, and file I/O.

The course involved ten weekly 75-minute lectures, from September 2010.

Pair-programming was conducted in six 30-minute practice sessions as the part of the

lecture.

As preparation for pair-programming practice, the training session was conducted. The

training was conducted in the same setting as the following pair-programming practice,

because of the possibility that some learners had not experienced pair-programming.

In each pair-programming practice session, a program-creation assignment, involving

contents hitherto studied, was given to the participants. An example of the assignment is

shown in Table 1. The following six instructions were given to the learners:

l Only the driver can operate the keyboard and mouse. The navigator must not touch

them, but may point to the display. The navigator must observe and support the work of

the driver.

l The assignment ends when the program is executed and a correct answer to the

assignment is obtained. Please end the assignment as soon as possible.

l The driver and navigator may refer to the textbook [14]. You must not refer to any web

pages.

l The teacher and teaching assistants (TA) do not accept any questions concerning the

assignment while practicing. Please call on them only in the event of equipment trouble.

l Please create the program easy to understand by adding pertinent comments.

l You have 30 minutes to success the assignment. Please submit your code even if

failure, when the time limit is reached.

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

364

A total of 62 learners participated in the practice session (52 freshmen and 10 upper-years).

Pair combinations were decided by one of the authors. The participants did not exchange

roles (of driver and navigator) in each practice session because the practice time was short.

Figure 1 shows a screenshot of the practice session. Figure 2 shows a scene from the

practice session. Three cameras were used for recording communication.

Table 1. An example of the exercises in the pair-programming class.

Figure 2. Scene from the practice session.

2.2 Definition

 O � � H (� � � � � L P � T � ' ' � � � � P � U & (J � " � � & � � � N " $ V J � % � & " � � � # (� � � & � # $ J J $ Q � W

Figure 1. Setup of the cameras for data collection.

Assignment 1:
Create a program for permutation and combination according to the following
specification.

Specification
 * Input: n, r (integer)
 * Output: � nPr = ?, nCr = ? � (? is calculated value)
Example

When 8 is input to n and 3 is input to r, the calculated result is displayed as follows:
 8P3 = 336, 8C3 = 56
Hint

As for permutation and combination, the general formulas are given as follows:

î
í
ì

=

³-´
=>³=

-
=>³

-
=

)1,0(1

)2()!1(
!),0(

!

Pr

)!(!

!
),0(

)!(

!
Pr

n

nnn
nrn

r

n

rnr

n
nCrrn

rn

n
n

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

365

l T � ' ' � � � W � T � ' ' � � � � (� � H � (� � � � (# (� " $ # � H $ Q (� I � H � ! " $ V J � % Q & � � $ J R � � S O � � $ � � � $ �" � J & � � � $ � H � J � & " � � " � � � � ' ' � � � � $ # J � & " � (� I S
l U & (J � " � W � U & (J � " � � (� � H

e identifier of showing the problem was not solved within the I (R � � J (% (� � � � (% � S O � � $ � � � $ � " � J & � � � $ � H � J � & " � � " � � # & (J � " � � $ # J � & " � (� I S
l N " $ V J � % W � X ! " $ V J � % � (� & ' $ % ! (J & � ($ � � " " $ " � H & � $ ' ' � " � Q H � � J � & " � � " � ' $ % ! (J � � H � ("

program, or a runtime error that occurs runtime including whose result does not meet � H � J � & " � � " � � Y ! � ' � & � ($ � S X J � H $ � I H Q � M � $ Q � H $ � � ' $ � ' � ! � � $ # Z L I $ � � M L � [$ � � $ # N " $ Y (% & J \ � R � J $! % � � � & � �] & R � & � � ^ � � I � " �] � I (� (% & � � N � " (! H � " & J N & " � (' (! & � ($ � P & � � � # & (J � " � � (� � $ � _ � � � # & (J � " �
there [9̀ P Q � � $ � $ � � � & J Q (� H � H & � � # & (J � " � � (� � H (� ! & ! � " S G H � " � # & (J � " � ' & � V � " � � $ � " ' � # $ "J � & " � (� I S a � " � � H � � � " % � # & (J � " � � (� � � � � & � & � (� � � � (# (� " $ # � � � � ' ' � � � # � J " � � � J � $ # � $ J R (� I � H �� " " $ " � H & � $ ' ' � " " � � � � " (� I ! " $ I " & % % (� I S O � $ � H � " Q $ " � � P � H � � � " % � # & (J � " � � & � � � � � ' ' � � � � (�
this paper do not imply any notion known in learning sciences. They are simple and clear

identifiers of the result of solving the errors.

2.3 Problems Occurring in the Practice Session

Table 2 shows the problems which occurred among the pairs whose communication was

recorded. These problems occurred in pairs of first-year students. Table 2 shows six success

cases and three failure cases. Some pairs attempted to solve two or more problems in a given

practice session. Problem-solving went well in the success cases. The problems listed in

Table 2 were causes of the error that the pair finally identified. In Failure Case A and B,

problems which the authors recognized by observing the video are listed, because the

respective pair did not recognize the cause of error. There were only three failure cases in

this practice session. This is because the assignments given to the participants were easy.

Most of the pairs completed the assignment within the time limit.

Table 2. Problems occurring in the practice session.

Case Pair Problems

Success A Pair A
Compilation error
Semicolon was not written at the end of a line.

Success B Pair B
Compilation error
The string � enum� was a reserved word.

Success C Pair B
Compilation error
The source file was not preserved in the superscription.

Success D Pair B
Compilation error, Segmentation error
The � scan� sentence was written like K scanf(� %d� , a); . b � &�
was missing.

Success E Pair C
Run-time error
Beginning of a block did not correspond to the end.
There were some spelling mistakes.

Success F Pair C
Run-time error
The return value of a function was not correctly returned.

Failure A Pair D
Run-time error
The case divided by 0 was included in the � for� sentence.

Failure B Pair A
Run-time error
The value of a variable was not correctly substituted by the
global variable declaration.

Failure C Pair E
Compilation error
Neither the main file nor the header file was correctly linked.

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

366

3. Difference between Success and Failure Cases

Success and Failure cases in problem-solving were analyzed and compared in term of pairs
conversation. The utterances of the pairs and the context of pair-programming were

recorded with iCorpusStudio [13], which is a video-analysis support tool. With the tool, we

can simultaneously view the recorded data as multiple video, audio, and motion, while

annotating the interpretations of the interactions as labels.

3.1 Examples of Success and Failure Cases

We show two example sequences including utterances and some descriptions; one for � Success� case and the other for � Failure� case.

Table 3 shows a conversation in Success case A. In this case, the following error message � 19: error: expect K ; before K return � was output. The learners solved this problem in 100

seconds. Speech length marks the time from the point that the learner started his/her speech,

to the point that the learner ended the speech.

Table 4 shows a part of conversation in Failure case B. In this case, there was no output

though the program was executed and the driver input a value to a variable. The learners

tried to move the � while� sentence to another line. The learners spent 588 seconds solving

this problem, but the problem was not solved. The driver uttered 19 times in this case, while

the navigator uttered 61 times.

Table 3. A conversation in Success case A.

Utter.

no.

Spe-

aker

Speech

length

(sec.)

Utterance

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

D

D

N

N

D

D

N

D

D

N

D

N

N

N

N

N

D

D

N

N

D

0.9

0.9

1.5

4.1

0.9

1.8

2.7

1.9

1.1

1.6

0.7

1.4

0.7

1.5

1.2

1.3

1.5

1.7

3.1

1.7

0.7

The 19th line.

Ah c This line.

Ah c � return 0 � .

Line numbers are shown when a setting is changed.

Really?

I do not compile this program.

Did you save this program? Ah, you did.

I try to delete unnecessary lines.

(I think) the way is not good.

return 0 c

This point

Ah c after the � printf� sentence.

Um c

functional c

The 19th line

No changes are appeared.

This program consists of 17 lines.

Ah c , 19, the last line c N & " � � � H � � � � c Let s make sure the position of parentheses

The number of braces is wrong? c

Ok. (the problem was solved)

* Speaker - D: Driver, N: Navigator

* Speech length - The length more than 2 seconds is highlighted.

* Utterance - Description in the parentheses is the supplement by the authors.

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

367

Table 4. Part of a conversation in Failure case B.

3.2 Findings obtained from the Examples

As for the speaker, in the failure case, the driver and navigator spoke alternately from

utterance 14 to 22. From utterance 23, however, the navigator spoke continuously; that is,

the driver did not talk. The navigator spoke more continuously in the failure case than in the

success case. As for the speech length, there were 9 utterances that are more than two

seconds in length in the failure case. Especially, from utterance 26 to 31, the navigator spoke

continuously and all of his succeeding utterances were more than two seconds in length.

The investigation of these example dialogues suggests that there may be a relationship

between speech length and/or speech continuity and success/failure of problem-solving.

Utter.

no.

Spe-

aker

Speech

length

(sec.)

Utterance

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

N

D

N

D

N

D

N

D

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

1.2

0.4

1.6

1.1

1.1

0.7

1.7

1.1

2.6

0.7

1.2

1.2

2.9

2.1

4.4

3.5

5.6

4.0

1.3

1.9

3.0

0.7

4.5

1.6

The � while � sentence...

Umm.

Let s move outside of the � main� function. � Main� ?

Please move above the function.

Umm.

From this line to this line... Ok.

Umm.

Please cut the selected lines.

Next...

Let me see... � While� sentence...

(The driver operates.)

Not � while� sentence. Sorry, please undo.

Sorry, it became strange.

You may move this function outside.

(The driver operates.)

From this line to this line...

(The driver operates.)

Because this function was moved outside, the declaration

of the variable might be wrong. � jyun � (= a variable) is ok. � ans� (= a variable) is ok. � n�

(=a variable) is ... � n� is...

Is it correct to declare this variable outside the function?

Global...?

Index...

Global... global variable.

Ok. It is possible to declare this variable outside the

function.

* Speaker - D: Driver, N: Navigator

* Speech length - The length more than 2 seconds is highlighted.

* Utterance - Description in the parentheses is the supplement by the authors.

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

368

Discussion of the relation may require further investigation; for example, through observing

more cases in the practice sessions.

4. Conclusion

We have adopted pair-programming method in software engineering to programming

learning. Naturally there occurred both successful case and failed case in solving the

problem when the problem arose in the course of completing the task. We observed a few

such cases and found that there seemed to be difference in utterance patterns between

successful case and failed case. We will analyze the learners conversation and behavior

more in detail to obtain clearer symptoms to indicate the status of pair programming. Then

we will develop a computer-supported pair programming system that uses the symptoms.

Acknowledgments

The authors would like to thank Naiwen Tei for her contribution to the data collection. This

research was partially supported by the Japan Society for the Promotion of Science (JSPS)

Grant-in-Aid for JSPS Fellows 23.2956, the JSPS Grant-in-Aid for scientific research

22500104, and the Research Projects of Graduate School of Library, Information and Media

Studies, University of Tsukuba.

References

[1] Beck, K. (1999). Extreme Programming Explained: Embrace Change, Reading, PA: Addison-Wesley.

[2] Bryant, S., Romero, P., and Boulay, B. (2008). Pair Programming and the Mysterious Role of the

Navigator, International Journal of Human-Computing Study, 66(7), Academic Press, 519-529.

[3] Chen, W. and Nordbo, M. (2007). Understanding Pair-Programming from a Socio-cultural Perspective,

Proc. Computer-supported Collaborative Learning (CSCL), International Society of the Learning

Sciences (ISLS) Press, 138-140.

[4] Chong, J., and Siino, R. (2006). Interruptions on Software Teams: A Comparison of Paired and Solo

Programmers, Proc. Computer-supported Cooperative Work (CSCW), ACM Press, 29-38.

[5] Chong, J., and Hurlbutt, T. (2007). The Social Dynamics of Pair Programming, Proc. International

Conference on Software Engineering (ICSE), IEEE Press, 354-363.

[6] Hanks, B., McDewell, C., Draper, D., and Krnjajic, M. (2004). Program Quality with Pair Programming

in CS1, Proc. Innovation and Technology in Computer Science Education (ITiCSE), ACM Press,

176-180.

[7] McDowell, C., Werner, L., Bullock, H., and Fernald J. (2002). The Effects of Pair-Programming on

Performance in an Introductory Programming Course, Proc. ACM SIGCSE, ACM Press, 38-42.

[8] Nagappan, N., Williams, L., Ferzli, M., Wieve, E., Yang, K., Miller, C., and Balik, S. (2003). Improving

the CS1 Experience with Pair Programming, Proc. ACM SIGCSE, ACM Press, 359-362.

[9] National Research Council. (1999). How People Learn, National Academies Press.

[10] Onishi, K. (2010). How to Teach What in a Course of Programming?: Foreword. Information

Processing, 51(10), Information Processing Society of Japan (IPSJ) Press, 1341. (in Japanese)

[11] Rountree, J., Rountree, N., Robins, A., and Hannah, R. (2005). Observations of Student Competency in a

CS1 Course, Proc. Australasian Computing Education Conference (ACE), Australian Computer Society

Press, 145-149.

[12] Shinkai, J., and Miyaji, I. (2009). Effects of C Programming Education Which Makes a Point of Process

with Evaluation Activity. Journal of Japanese Society for Information and Systems in Education (JSiSE),

26(1), 16-25. (in Japanese)

[13] Sumi, Y., Yano, M., and Nishida, T. (2010). Analysis Environment of Conversational Structure with

Nonverbal Multimodal data, Proc. International Conference on Multimodal Interfaces and the

Workshop on Machine Learning for Multimodal Interaction (ICMI-MLMI), ACM Press.

[14] Takahashi, M. (2007). Yasashii C (in Japanese Title), Softbank Creative Press, ISBN-10:

9784797343663.

[15] Urness, T. (2009). Assessment Using Peer Evaluations, Random Pair Assignment, and Collaborative

Programming in CS1, Journal of Computing Sciences in Colleges, 25(1), 87-93.

[16] Wray, S. (2010). How Pair Programming Really Works, IEEE Software, Jan./Feb., IEEE Press, 50-55.

Mohd Ayub A. F. et al. (Eds.) (2011). Workshop Proceedings of the 19th International Conference on Computers in Education. ChiangMai, Thailand:

Asia-Pacific Society for Computers in Education.

369

