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Abstract:  In this paper, we present a novel programming learning environment for kids 
using physical robots on a tabletop platform. The proposed system supports intuitive 
multi-touch input on the surface and direct manipulations on physical items, enabling users 
to learn programming in an intuitive manner. A user study is conducted to verify the 
usability for applications with a learning purpose. The lessons learned with respect to 
design guidelines for the proposed learning environment and issues for investigation are 
discussed. 
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Introduction 
 
With the rapid development of information technology, many kinds of digital learning 
materials have been introduced to students. A good example is programming learning 
activity. Because of its intuitiveness, tangible programming environment has been 
developed in recent years. An early approach is curlybot developed by Frei et al. [1]. 
curlybot allows a user to directly drag the robot and repeat the movement the user 
performed. This simple function enabled an intuitive programming for robots.  
 Later projects attempted to provide more complex functions rather than defining a 
motion. For instance, Quetzal is a simple programming tool for elementary school students 
[5]. By attaching markers, moving blocks and building program chains, the children can 
learn simple programming concepts such as loop and branch. Another TUI (tangible user 
interface) programming example is TurTan [3]. By moving programming plates on a 
tabletop, students can easily define the path of a virtual turtle. Horn et al. compared TUI 
programming and GUI (graphical user interface) programming methods in an 
experimental museum exhibition [6]. They counted the successful programming number 
and code length created by visiting students, and concluded that more students preferred to 
programming in a TUI programming environment. 
 In this paper, we present our work of creating a tabletop learning environment using 
physical robot, called RoboTable. A prototype application named ExploreRobot is 
developed in the RoboTable environment, which allows kids and programming beginners 
to easily understand programming basics through direct manipulation and intuitive 
feedback. A user study is conducted and the result revealed that such a learning 
environment makes learning of robot programming easier in some aspects such as defining 
a behavior of the robot and inputting parameters. The proposed method and environment 
is expected to have applications for many different learning activities. 
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1. RoboTable Environment
 
RoboTable in a tabletop platform constructed in our lab [8]. RoboTable integrates DI 
(Diffused Illumination) [2] and FTIR (Frustrated Total Internal Reflection) [4] so that it 
can simultaneously recognize multi finge
employ physical robots for the RoboTable platform in order to create a tangible interface 
that has intuitive kinetic feedback. For tracking robot an image recognition library called 
reacTIVision [7] that can identi
used. A robot is controlled by the system via Bluetooth communications. The tracking 
scheme and system configuration of RoboTable platform is shown in Fig. 1.
 

Fig. 1 RoboTable platform: integrated DI and FTIR tracking (left)
and the tabletop system configuration (right)
 
 
2. Tangible Programming Prototype
 
2.1  Implementation 
 

 
Based on the RoboTable platform, we created a prototype application, which is c
“ExploreRobot”, in order to realize the proposed tangible programming interface.
ExploreRobot is a learning assistant application designed for school students and 
programming beginners. The aim of this application was to help users understand the bas
concepts of robot programming. A robot equipped with a virtual sensor is placed in a 
virtual maze. An acrylic plate is placed somewhere on the table to indicate the goal of the 
robot explorer. A player has to define actions and set events for the robot 
the robot have a complete program to find the path to the goal in a maze.

RoboTable Environment 

RoboTable in a tabletop platform constructed in our lab [8]. RoboTable integrates DI 
(Diffused Illumination) [2] and FTIR (Frustrated Total Internal Reflection) [4] so that it 
can simultaneously recognize multi finger touches and conduct object tracking. We 
employ physical robots for the RoboTable platform in order to create a tangible interface 
that has intuitive kinetic feedback. For tracking robot an image recognition library called 
reacTIVision [7] that can identify a fuducial marker attached to the bottom of each robot is 
used. A robot is controlled by the system via Bluetooth communications. The tracking 
scheme and system configuration of RoboTable platform is shown in Fig. 1.

platform: integrated DI and FTIR tracking (left) 
and the tabletop system configuration (right) 

Tangible Programming Prototype 

 
Figure 2. ExploreRobot 
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 Fig. 2 illustrates the ExploreRobot prototype, which creates a mixed
programming interface that enables basic programming tasks such as finding a s
goal and avoiding obstacles. This programming interface consists of six basic components:
� Robot: A real robot is deployed in ExploreRobot. The robot takes two roles in this 

application. In the programming stage, the robot is used as a tangible indi
enables direct manipulation for behavior definition. In the execution stage, the robot is 
used as a physical programming executor that behaves following defined program.

� Virtual Sensor: A virtual sensor is a graphical component attached to the
moves with the robot accordingly so that the virtual sensor seems like physically 
bounded to the robot. The virtual sensor has a fan
located at the center of the robot. The fan
symmetry axis, which coincides with forward direction of the robot. Each part can 
detect either virtual obstacles or the goal plate and notify the robot of detected object 
and position (e.g. left or right). Users can adjust the detecting range

� Control Button : Control buttons are graphical buttons surrounding the robot to 
provide some specific functions such as record, execute, etc.

� Event Block: An event block is a basic programming module, which indicates a series 
of actions regarding a specific event. All the event blocks compose the whole 
program. 

� Virtual Maze : Virtual maze is a set of rectangle obstacles that 
We created a series of mazes with different difficulty
challenge different tasks.

� Goal: The goal of the maze is determined by placing a piece of 
plate on the table. In each task, one can easily change the position of the goal by direct 
moving the acrylic plate.

 
2.2  Programming interface
 
ExploreRobot supports three input methods for programming the robot.
� Direct manipulation: A player can directly manipulate the robot as a tangible token. 

Direct manipulation is used as a motion input in order to define the robot’s behavi
(See Fig. 3 left). 

� Interactions with digital contents: 
the robot, and drag or move other digital contents such as event blocks. Interactions 
with digital contents enable players to select functions or bui
blocks (See Fig. 3 middle).

� Multi- touch gesture input: 
contents. Multi-touch gesture input is used for adjusting range of the vi
(See Fig. 3 right). 
 

Fig. 3: Input methods for ExploreRobot: input by direct manipulation (left); interact 
with digital contents (middle) and input 

Fig. 2 illustrates the ExploreRobot prototype, which creates a mixed
programming interface that enables basic programming tasks such as finding a s
goal and avoiding obstacles. This programming interface consists of six basic components:

: A real robot is deployed in ExploreRobot. The robot takes two roles in this 
application. In the programming stage, the robot is used as a tangible indi
enables direct manipulation for behavior definition. In the execution stage, the robot is 
used as a physical programming executor that behaves following defined program.

: A virtual sensor is a graphical component attached to the
moves with the robot accordingly so that the virtual sensor seems like physically 
bounded to the robot. The virtual sensor has a fan-shaped detection area with a vertex 
located at the center of the robot. The fan-shaped area is divided into two 
symmetry axis, which coincides with forward direction of the robot. Each part can 
detect either virtual obstacles or the goal plate and notify the robot of detected object 
and position (e.g. left or right). Users can adjust the detecting range and width freely.

: Control buttons are graphical buttons surrounding the robot to 
provide some specific functions such as record, execute, etc. 

: An event block is a basic programming module, which indicates a series 
regarding a specific event. All the event blocks compose the whole 

: Virtual maze is a set of rectangle obstacles that the robot cannot pass. 
We created a series of mazes with different difficulty levels so that users can 
challenge different tasks. 

: The goal of the maze is determined by placing a piece of an 
plate on the table. In each task, one can easily change the position of the goal by direct 
moving the acrylic plate. 

ramming interface 

ExploreRobot supports three input methods for programming the robot. 
A player can directly manipulate the robot as a tangible token. 

Direct manipulation is used as a motion input in order to define the robot’s behavi

Interactions with digital contents: A player can touch buttons displayed surrounding 
the robot, and drag or move other digital contents such as event blocks. Interactions 
with digital contents enable players to select functions or build and organize event 
blocks (See Fig. 3 middle). 

touch gesture input: A player can use multi-touch gestures for some digital 
touch gesture input is used for adjusting range of the vi

hods for ExploreRobot: input by direct manipulation (left); interact 
with digital contents (middle) and input by multi- touch gestures (right)

Fig. 2 illustrates the ExploreRobot prototype, which creates a mixed-reality tangible 
programming interface that enables basic programming tasks such as finding a specific 
goal and avoiding obstacles. This programming interface consists of six basic components: 

: A real robot is deployed in ExploreRobot. The robot takes two roles in this 
application. In the programming stage, the robot is used as a tangible indicator, which 
enables direct manipulation for behavior definition. In the execution stage, the robot is 
used as a physical programming executor that behaves following defined program. 

: A virtual sensor is a graphical component attached to the robot and 
moves with the robot accordingly so that the virtual sensor seems like physically 

shaped detection area with a vertex 
shaped area is divided into two parts by the 

symmetry axis, which coincides with forward direction of the robot. Each part can 
detect either virtual obstacles or the goal plate and notify the robot of detected object 

and width freely. 
: Control buttons are graphical buttons surrounding the robot to 

: An event block is a basic programming module, which indicates a series 
regarding a specific event. All the event blocks compose the whole 

robot cannot pass. 
so that users can 

an acrylic circular 
plate on the table. In each task, one can easily change the position of the goal by direct 

A player can directly manipulate the robot as a tangible token. 
Direct manipulation is used as a motion input in order to define the robot’s behavior 

A player can touch buttons displayed surrounding 
the robot, and drag or move other digital contents such as event blocks. Interactions 

ld and organize event 

touch gestures for some digital 
touch gesture input is used for adjusting range of the virtual sensor 

hods for ExploreRobot: input by direct manipulation (left); interact 
touch gestures (right) 
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2.3  Event-driven architecture 
 
The ExploreRobot application prototype uses the even-driven programming architecture. 
A program is composed by a series of events, and particular behaviors regarding each 
specific event. An event and the corresponding behavior compose an event-behavior pair, 
which is the basic component of the event-driven programming architecture. 
 The first version of the ExploreRobot prototype supports a basic detection event: if a 
virtual obstacle or the goal enters in the range of the virtual sensor, the detection event is 
triggered. Each detection event is identified by both the detected object (obstacle or goal) 
and the position (left, right or front). When an event is triggered, the behavior associated 
to that specific event is executed subsequently. There is also a special event called 
“always”, the behavior which is always executed if there is no any other event triggered. 
To define an event-behavior pair in ExploreRobot is quite simple. A player puts the robot 
on the table, then the virtual sensor and some buttons appeared subsequently. Moving the 
robot to simulate a specific event (i.e. seeing obstacle at left), the player is able to press a 
“Record” button in order to define a behavior sequence regarding this specific event, and 
then the event block for this specific event is automatically generated (See Fig. 4 left). In 
the case there is no special event is simulated, pressing the “record” button generates the 
“always” event block. In order to avoid conflict that more than one event occurs, each 
event is assigned a priority. In the case of more than one event occurs coincidently, the 
behavior associated to an event with a higher priority is executed at first, then events with 
lower priorities. All the priority for each event block is hidden; the system handles priority 
check automatically. Basically, the “always” event has the lowest priority and the event of 
goal detection has the highest priority. 

 After an event block generated, the player can directly drag the robot as a motion 
input to define the motion trace of the robot. A motion trace is composed with a series of 
basic motions such as moving forward, backward, turning left and right. The motion trace 
manipulated by the player is automatically decomposed into a motion sequence. Each 
motion indicator in the sequence indicates the moving direction and specifies the distance 
(in centimeter) or rotation angle (in degree). Once the player confirmed the motion 
sequence displayed in the event block, s/he then pushes the “Save” button to finish 
recording (See Fig. 4 right). 
 One may ask how if a player wants to modify the motion trace during recording? 
Actually, the “recording” function does not exactly record everything the player 
performed. For example, if a player drags the robot 30cm forward, then pushes it 10cm 
back, the system will not record these two motions respectively. Instead, a motion of 

   
Fig. 4: Generating an event block (left) and  
defining a motion path for the robot (right)  
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moving 20cm forward will be restored. In other words, the system can automatically 
determine the motion sequence with minimum length. 
 When the player finishes all the definition of event blocks, he or she can press the 
“Play” button to execute the program and see how the robot works. If the robot 
successfully reaches the goal, the task is finished. Otherwise the player can pause the robot 
at any time and continue to revise his/her own program. 
 ExploreRobot programming interface also provides an intuitive management of 
programmed event blocks. By simply pressing a button, the event blocks switch between 
shown/hidden states so that the player can easily check the maze map or programming 
status. If the player wants to delete an existing event block, he or she can just drag that 
specific event block into a trash box to perform the deletion. 
 
 
3. Evaluation Experiment 
 
We have conducted a user study to investigate the effect of using the proposed system in 
programming learning activities. The goal of the experiment is to understand effects on 
using different programming agent (i.e. physical robot or virtual avatar) and different 
method (i.e. TUI programming and GUI programming). 
 
3.1  Experiment design 
 
This study used a 2 (agent) × 2 (method) design. For the agent, there were two conditions: 
physical robot (PR) agent and virtual avatar (VA) agent. The method also had two 
conditions: graphical programming and tangible programming. 
 In order to make reasonable comparisons, we also developed a simple graphical 
programming interface for ExploreRobot. All the components in this graphical 
programming interface are exactly the same as in the tangible programming interface. 
However, instead of direct manipulation for parameter input, this graphical programming 
interface provides several event blocks and action blocks, which can be dragged into event 
blocks to make a complete event-behavior pair. There is also a slider at the corner of the 
table that indicates the parameter of the current action block. Sliding the slider can adjust 
the parameter of the current action block. 
 
3.2  Procedure 
 
A total number of 9 participants (6 male, 9 female, average age: 21.4) were recruited from 
our university. All participants filled out a questionnaire that surveyed their basic 
demographics (e.g. gender, age, programming experience). We have confirmed that each 
participant has no knowledge or very few experience about programming. Participants 
were given a brief tutorial regarding the basics of the programming environment and 
manipulations, such as multi-touch, gesture and direct dragging the robot. 
 Then, participants were given another tutorial regarding programming the robot. The 
experimenter introduced the event-driven architecture and a sample program, which 
enables the robot to explore the maze. Once the participant confirmed that he or she could 
understand the program, the participant carried out the four tasks in four different 
experimental settings (i.e., one condition was randomly assigned to each task). 
 After each condition, participants filled out a questionnaire that included self-report 
items. The order in which participant were assigned to the two agents (ATUI and GUI) 
was altered. Once the agent was introduced as a real robot or a virtual robot, the order of 
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method (tangible and graphical) was altered as well. All order assignments were 
counterbalanced. 
 
3.3  Measure 
 
Evaluation items are scored using self-report questionnaires. The questionnaire includes 
five evaluation items that measure users’ perception regarding their programming process. 
The five evaluation items are listed below: 
� Easy for understanding programming method; 
� Easy for setting events; 
� Easy for defining behaviors; 
� Easy for inputting parameters; 
� Easy for imagine the actual movement of the robot. 
Each evaluation item uses a 7-point Likert scale, rating from 1 (strongly disagree) to 7 
(strongly agree). 
 
4.  Result 
 
4.1  Effect on interface 
 
Firstly, a Wilcoxon signed-rank test is conducted in which the interface used in the 
programming process (i.e. PR or VA) was the independent factor. Table 1 shows the Z and 
p values of each item. Fig. 5 compares mean and SD of three items which fulfilled the 
requirement p < 0.05. 

From Table 1 and Fig. 5 we can find that the analysis yielded three significant effects of 
interface and showed that users felt easier when setting events (PR: M = 5.67, SD = 0.91; 
VA : M = 5.17, SD = 1.34), defining behaviors (PR: M = 5.78, SD = 0.94; VA : M = 5.39, 
SD = 1.20) and inputting parameters (PR: M = 5.06, SD = 1.39; VA : M = 4.11, SD = 1.28) 
with a physical robot. This result gave us reliable evidence that users perceived easier in 
programming processes while using a physical robot for the programming interface.  

 

 
Figure 5 

Table 1: Effect on agent 
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4.2  Effect on method 
 
Next, another Wilcoxon signed-rank test is conducted in which the programming method 
(i.e. TUI programming or GUI programming) was the independent factor. Table 2 shows 
the Z and p values of each item. 
 From Table 2 we can find that only “easy for imagining robot’s movement” meets the 
requirement of p < 0.05. The analysis yielded one significant effect of programming 
method and showed that users felt easier in imagining robot’s movement during 
programming process (PR: M = 5.72, SD = 0.96; VA : M = 4.56, SD = 1.20) 

 
4. Conclusion 
 
In this paper, we proposed a novel tabletop learning environment using physical robots. A 
prototype application called ExploreRobot is developed for learning programming basics 
by defining behaviors for a tangible robot on the tabletop using an intuitive TUI 
programming method. We have conducted a comparative user studies with a conventional 
graphical programming environment to clarify the problem to be solved, issues to be 
investigated and lessons learned for constructing a design guideline of this programming 
environment. The result revealed that using a physical robot agent and TUI programming 
method makes programming learning easy. In our future work, we will evaluate the 
proposed environment in school education with children. In this paper, all the evaluations 
were conducted in a single user setting, which needed less complex analyses as compared 
with a multi user setting, in order to clarify effects of the proposed environment in a 
simpler situation. It is said that learning in a tangible tabletop environment can enhance 
interactions between users and support their collaboration. Therefore, to design and 
evaluate the system so that it can support collaboration between users is also one of our 
important future works. In the current implementation, a robot with simple functions is 
used. Thus, we will investigate if the programming technique in the proposed system is 
applicable to a robot with more complicated functions. 
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