Creating a Tabletop Learning Environment
Using Physical Robots

Haipeng MI¥ & Masanori SUGIMOTO ®
4Interfaculty Initiative in Information Studies, Uirsity of Tokyo, Japan
PGraduate School of Engineering, University of Toklapan
*mi@iii.u-tokyo.ac.jp

Abstract: In this paper, we present a novel programmingniegrenvironment for kids
using physical robots on a tabletop platform. Theppsed system supports intuitive
multi-touch input on the surface and direct maragiohs on physical items, enabling users
to learn programming in an intuitive manner. A uséndy is conducted to verify the
usability for applications with a learning purpodéhe lessons learned with respect to
design guidelines for the proposed learning enwvitent and issues for investigation are
discussed.

Keywords: Tabletop, tangible user interface, learning, robot

Introduction

With the rapid development of information technglpgnany kinds of digital learning
materials have been introduced to students. A go@inple is programming learning
activity. Because of its intuitiveness, tangibleognamming environment has been
developed in recent years. An early approach ityloor developed by Frei et al. [1].
curlybot allows a user to directly drag the robodaepeat the movement the user
performed. This simple function enabled an int@fprogramming for robots.

Later projects attempted to provide more complaxctions rather than defining a
motion. For instance, Quetzal is a simple programgniol for elementary school students
[5]. By attaching markers, moving blocks and bunlfiprogram chains, the children can
learn simple programming concepts such as loopbaawich. Another TUI (tangible user
interface) programming example is TurTan [3]. Byvwing programming plates on a
tabletop, students can easily define the path wftaal turtle. Horn et al. compared TUI
programming and GUI (graphical user interface) paogning methods in an
experimental museum exhibition [6]. They countee siccessful programming number
and code length created by visiting students, amdladed that more students preferred to
programming in a TUI programming environment.

In this paper, we present our work of creatingladtop learning environment using
physical robot, called RoboTable. A prototype aggiion named ExploreRobot is
developed in the RoboTable environment, which aléwds and programming beginners
to easily understand programming basics througlectimanipulation and intuitive
feedback. A user study is conducted and the resmyealed that such a learning
environment makes learning of robot programmingegas some aspects such as defining
a behavior of the robot and inputting parametehe proposed method and environment
is expected to have applications for many diffeteatning activities.

533

1. RoboTable Environment

RoboTable in a tabletop platform constructed in @lr [8]. RoboTable integrates |
(Diffused Illlumination) [2] and FTIR (Frustrated &b Internal Reflection) [4] so that
can simultaneously recognize multi fir touches and conduct object tracking.
employ physical robots for the RoboTable platfomorder to create a tangible interfe
that has intuitive kinetic feedback. For trackimdpot an image recognition library call
reacTIVision [7] that can iderfy a fuducial marker attached to the bottom of ediot is
used. A robot is controlled by the system via Bdoghh communications. The tracki
scheme and system configuration of RoboTable platis shown in Fig. :

Tracing

e [7
Comliant: — = e ——— |
surface R T |
N e L T

IR LEDs
Acrylic

T s, N\, / L ue*
Enclosed/, DE?
Camera IR Lights

Fig. 1 RoboTablglatform: integrated DI and FTIR tracking (le
and the tabletop system configuration (ri

2. Tangible Programming Prototype

2.1 Implementation

Virtual Maze

Virtual Senscr

Figure 2. ExploreRobot

Based on the RoboTable platform, we created a pymoapplication, which isalled

“ExploreRobot”, in order to realize the proposeddiale programming interfac

ExploreRobot is a learning assistant applicatiorsigieed for school students a
programming beginners. The aim of this applicati@s to help users understand theic

concepts of robot programming. A robot equippechvétvirtual sensor is placed in
virtual maze. An acrylic plate is placed somewhanehe table to indicate the goal of
robot explorer. A player has to define actions selevents for the robin order to make
the robot have a complete program to find the pathe goal in a maz

534

Fig. 2 illustrates the ExploreRobot prototype, whizeates a mixe«reality tangible

programming interface that enables basic programrasks such as finding ipecific
goal and avoiding obstacles. This programming fater consists of six basic compone

Robot: A real robot is deployed in ExploreRobot. Theablakes two roles in th
application. In the programming stage, the robatsisd as a tangible ircator, which
enables direct manipulation for behavior definitibomthe execution stage, the robo
used as a physical programming executor that bsHhallewing defined prograr
Virtual Sensor: A virtual sensor is a graphical component attdcteeth¢ robot and
moves with the robot accordingly so that the virtsansor seems like physica
bounded to the robot. The virtual sensor has -shaped detection area with a ver
located at the center of the robot. The-shaped area is divided into tyarts by the
symmetry axis, which coincides with forward directiof the robot. Each part c
detect either virtual obstacles or the goal plaie @otify the robot of detected obje
and position (e.g. left or right). Users can adjbstdetecting rantand width freely
Control Button: Control buttons are graphical buttons surrounding robot tc
provide some specific functions such as recordg@ee etc

Event Block: An event block is a basic programming module,cvhindicates a serit
of actionsregarding a specific event. All the event blocksmpose the whol
program.

Virtual Maze: Virtual maze is a set of rectangle obstaclestherobot cannot pas
We created a series of mazes with different diff)x levels so that users ce
challenge different tasl

Goal: The goal of the maze is determined by placingegepofan acrylic circular
plate on the table. In each task, one can easdggdnthe position of the goal by dir
moving the acrylic plat

2.2 Progamming interfac

ExploreRobot supports three input methods for @gning the robc

Direct manipulation: A player can directly manipulate the robot as aiale token.
Direct manipulation is used as a motion input ideorto define the robot’s behor

(See Fig. 3 left).

Interactions with digital contents: A player can touch buttons displayed surrount
the robot, and drag or move other digital conteniish as event blocks. Interactic
with digital contents enable players to select fioms or buld and organize eve
blocks (See Fig. 3 middl«

Multi- touch gesture input: A player can use multbuch gestures for some digi

contents. Multitouch gesture input is used for adjusting rangéhefvirtual sensor
(See Fig. 3 right).

Fig. 3: Input methods for ExploreRobot: input by direct manipulation (left); interact

with digital contents (middle) and input by multi- touch gestures (right

Direct manipulation Interaction with Multi-touch
as input digital contents gesture input

535

2.3 Event-driven architecture

The ExploreRobot application prototype uses then&lreren programming architecture.
A program is composed by a series of events, amticplar behaviors regarding each
specific event. An event and the corresponding Weh@ompose an event-behavior pair,
which is the basic component of the event-drivasgm@mming architecture.

The first version of the ExploreRobot prototyp@sorts a basic detection event: if a
virtual obstacle or the goal enters in the rangéhefvirtual sensor, the detection event is
triggered. Each detection event is identified byhlibe detected object (obstacle or goal)
and the position (left, right or front). When areavis triggered, the behavior associated
to that specific event is executed subsequentlyerdhs also a special event called
“always”, the behavior which is always executethdre is no any other event triggered.
To define an event-behavior pair in ExploreRobajuge simple. A player puts the robot
on the table, then the virtual sensor and somehsithppeared subsequently. Moving the
robot to simulate a specific event (i.e. seeingatds at left), the player is able to press a
“Record” button in order to define a behavior setwgeregarding this specific event, and
then the event block for this specific event isoauatically generated (See Fig. 4 left). In
the case there is no special event is simulatexssprg the “record” button generates the
“always” event block. In order to avoid conflictathmore than one event occurs, each
event is assigned a priority. In the case of mbentone event occurs coincidently, the
behavior associated to an event with a higher ipyi@ executed at first, then events with
lower priorities. All the priority for each evenlogok is hidden; the system handles priority
check automatically. Basically, the “always” evéas the lowest priority and the event of
goal detection has the highest priority.

(1) Move the robot
(2) Motion recorded in block
@ Press ‘Save’ button

(D Move the robot ‘
@ Trigger a event

@ Press ‘Record’ button
@ Event block generated

53 R B

Wall detected: right
Forward 19 cm

Fig. 4. Generating an event block (left) and
defining a motion path for the robot (right)

After an event block generated, the player carctly drag the robot as a motion
input to define the motion trace of the robot. Atioio trace is composed with a series of
basic motions such as moving forward, backwarditgrleft and right. The motion trace
manipulated by the player is automatically decoregdomto a motion sequence. Each
motion indicator in the sequence indicates the mgdirection and specifies the distance
(in centimeter) or rotation angle (in degree). Otlee player confirmed the motion
sequence displayed in the event block, s/he theshgmuthe “Save” button to finish
recording (See Fig. 4 right).

One may ask how if a player wants to modify thetiomotrace during recording?
Actually, the “recording” function does not exacthecord everything the player
performed. For example, if a player drags the r@simm forward, then pushes it 10cm
back, the system will not record these two motioespectively. Instead, a motion of

536

moving 20cm forward will be restored. In other wardhe system can automatically
determine the motion sequence with minimum length.

When the player finishes all the definition of rvdlocks, he or she can press the
“Play” button to execute the program and see how tbbot works. If the robot
successfully reaches the goal, the task is finisB¢lderwise the player can pause the robot
at any time and continue to revise his/her own g

ExploreRobot programming interface also provides iatuitive management of
programmed event blocks. By simply pressing a lttioe event blocks switch between
shown/hidden states so that the player can ealdgkcthe maze map or programming
status. If the player wants to delete an existimgne block, he or she can just drag that
specific event block into a trash box to performa dteletion.

3. Evaluation Experiment

We have conducted a user study to investigateffeetef using the proposed system in
programming learning activities. The goal of thegexment is to understand effects on
using different programming agent (i.e. physicdbabor virtual avatar) and different
method (i.e. TUI programming and GUI programming).

3.1 Experiment design

This study used a 2 (agent) x 2 (method) designtteagent, there were two conditions:
physical robot (PR) agent and virtual avatar (VAjemt. The method also had two
conditions: graphical programming and tangible pragming.

In order to make reasonable comparisons, we atseloped a simple graphical
programming interface for ExploreRobot. All the quwmnents in this graphical
programming interface are exactly the same as entéimgible programming interface.
However, instead of direct manipulation for paranetput, this graphical programming
interface provides several event blocks and adilooks, which can be dragged into event
blocks to make a complete event-behavior pair. @lealso a slider at the corner of the
table that indicates the parameter of the curretibra block. Sliding the slider can adjust
the parameter of the current action block.

3.2 Procedure

A total number of 9 participants (6 male, 9 femalegrage age: 21.4) were recruited from
our university. All participants filled out a quEstnaire that surveyed their basic
demographics (e.g. gender, age, programming exmeeWe have confirmed that each
participant has no knowledge or very few experieabeut programming. Participants
were given a brief tutorial regarding the basicstled programming environment and
manipulations, such as multi-touch, gesture anectiniragging the robot.

Then, participants were given another tutoriabrdgg programming the robot. The
experimenter introduced the event-driven architectand a sample program, which
enables the robot to explore the maze. Once theipant confirmed that he or she could
understand the program, the participant carried thet four tasks in four different
experimental settings (i.e., one condition was oanmlg¢t assigned to each task).

After each condition, participants filled out aegtionnaire that included self-report
items. The order in which participant were assigtethe two agents (ATUI and GUI)
was altered. Once the agent was introduced ad @ot&at or a virtual robot, the order of

537

method (tangible and graphical) was altered as.wall order assignments were
counterbalanced.

3.3 Measure

Evaluation items are scored using self-report goiesaires. The questionnaire includes
five evaluation items that measure users’ percaptgarding their programming process.
The five evaluation items are listed below:

e Easy for understanding programming method;

e Easy for setting events;

e Easy for defining behaviors;

e Easy for inputting parameters;

e Easy for imagine the actual movement of the robot.

Each evaluation item uses a 7-point Likert scadéing from 1 (strongly disagree) to 7
(strongly agree).

4. Result
4.1 Effect on interface

Firstly, a Wilcoxon signed-rank test is conductedwhich the interface used in the
programming process (i.e. PR or VA) was the inddpahfactor. Table 1 shows tdeand

p values of each item. Fig. 5 compares mean and fSbree items which fulfilled the
requiremenp < 0.05.

Table 1: Effect on agent

Item A P
Understand programming -1.890 0.056
Set events -2.165 0.030*
Define behaviors -2.111 0.035*
Input parameters -2.204 0.022*
Imagine robot’s movement -1.769 0.077

From Table 1 and Fig. 5 we can find that the anslly®lded three significant effects of
interface and showed that users felt easier whgmgevents PR: M = 5.67,SD= 0.91;
VA: M =5.17,SD = 1.34), defining behavior®R: M = 5.78,SD = 0.94;VA: M = 5.39,
SD= 1.20) and inputting parametePR: M = 5.06,SD= 1.39;VA: M =4.11,SD= 1.28)
with a physical robot. This result gave us reliagedence that users perceived easier in
programming processes while using a physical rédrahe programming interface.

| physical
m wirtual

-
g%
m
o
ol

ot

gl

set

Imput define
event parameter behavior
Figure 5

538

4.2 Effect on method

Next, another Wilcoxon signed-rank test is conddigtewhich the programming method
(i.e. TUI programming or GUI programming) was tinelependent factor. Table 2 shows
theZ andp values of each item.

From Table 2 we can find that only “easy for immagg robot’s movement” meets the
requirement ofp < 0.05. The analysis yielded one significant dffet programming
method and showed that users felt easier in imagimobot's movement during
programming proces®R: M =5.72,SD= 0.96;VA: M = 4.56,SD = 1.20)

Table 2: Effect on method

Item Z p
Understand programming -0.302 0.763
Set events -0.540 0.589
Define behaviors -0.722 0.470
Input parameters -0.894 0.372
Imagine robot’s movement -2.980 0.003*

4. Conclusion

In this paper, we proposed a novel tabletop legreimvironment using physical robots. A
prototype application called ExploreRobot is depeld for learning programming basics
by defining behaviors for a tangible robot on tlablétop using an intuitive TUI
programming method. We have conducted a comparasee studies with a conventional
graphical programming environment to clarify thelem to be solved, issues to be
investigated and lessons learned for constructidgsagn guideline of this programming
environment. The result revealed that using a glaysobot agent and TUI programming
method makes programming learning easy. In ourrdutmork, we will evaluate the
proposed environment in school education with chitd In this paper, all the evaluations
were conducted in a single user setting, which egdess complex analyses as compared
with a multi user setting, in order to clarify efte of the proposed environment in a
simpler situation. It is said that learning in ad#le tabletop environment can enhance
interactions between users and support their cmiédlon. Therefore, to design and
evaluate the system so that it can support colédlmor between users is also one of our
important future works. In the current implemergatia robot with simple functions is
used. Thus, we will investigate if the programmteghnique in the proposed system is
applicable to a robot with more complicated funasio

Acknowledgements
The authors thank Tomoki Fujita, Weigin Chen, Sh@gmjima, and Akinobu Niijima for
their collaboration and valuable feedback to thgggzxt.

References

[1] Frei, P, Su, V., Mikhak, B., & Ishii H. (2000). dybot: Designing a New Class of Computational
Toys. InProceedings of CHI '0Qpp. 129-136). The Hague, The Netherlands: ACM®re

[2] Roth, T. (2007). FTIR vs DI. Retrieved fromifiad.projects.zhdk.ch/multitouch/?p=47/

[3] Gallardo, D., Julia, C. F., & Jorda, S. (2008w Tan: a Tangible Programming Language for Cveati
Exploration. InProceedings of TABLETOP ‘Q®p. 89-92). Amsterdam, the Netherlands: IEEEres

539

[4]
[5]
[6]

[7]
(8]

Han, J. (2005). Low-Cost Multi-Touch Sensingaihgh Frustrated Total Internal Reflection. In
Proceedings of UIST '0fpp. 115-118). Seattle, WA: ACM Press.

Horn, M. S. & Jacob, R. J. K. (2006). Tangilfleogramming in the Classroom: A Practical Approach.
In Proceedings of CHI '0§pp. 869—874). Montreal, Quebec, Canada: ACM Press

Horn, M., Solovey, E. & Crouser, R. (2009). Quaning the Use of Tangible and Graphical
Programming languages for Informal Science Edunatin Proceedings of CHI '09pp. 975-984),
Boston, MA: ACM Press.

Kaltenbrunner, M. & Bencina, R. (2007). reacTddn: A Computer-Vision Framework for Table-
Based Tangible Interaction. Rroceedings of TEI '0¢pp. 69-74), Baton Rouge, LA: ACM Press.
Krzywinski, A., Mi, H., Chen, W., & Sugimoto, M(2009). RoboTable: A Tabletop Framework for
Tangible Interaction with Robots in a Mixed Reality Proceedings of ACE '09pp. 107-114),
Athens, Greece: ACM Press.

540

