

Creating a Tabletop Learning Environment
Using Physical Robots

Haipeng MIa* & Masanori SUGIMOTO b

aInterfaculty Initiative in Information Studies, University of Tokyo, Japan
bGraduate School of Engineering, University of Tokyo, Japan

*mi@iii.u-tokyo.ac.jp

Abstract: In this paper, we present a novel programming learning environment for kids
using physical robots on a tabletop platform. The proposed system supports intuitive
multi-touch input on the surface and direct manipulations on physical items, enabling users
to learn programming in an intuitive manner. A user study is conducted to verify the
usability for applications with a learning purpose. The lessons learned with respect to
design guidelines for the proposed learning environment and issues for investigation are
discussed.

Keywords: Tabletop, tangible user interface, learning, robot

Introduction

With the rapid development of information technology, many kinds of digital learning
materials have been introduced to students. A good example is programming learning
activity. Because of its intuitiveness, tangible programming environment has been
developed in recent years. An early approach is curlybot developed by Frei et al. [1].
curlybot allows a user to directly drag the robot and repeat the movement the user
performed. This simple function enabled an intuitive programming for robots.
 Later projects attempted to provide more complex functions rather than defining a
motion. For instance, Quetzal is a simple programming tool for elementary school students
[5]. By attaching markers, moving blocks and building program chains, the children can
learn simple programming concepts such as loop and branch. Another TUI (tangible user
interface) programming example is TurTan [3]. By moving programming plates on a
tabletop, students can easily define the path of a virtual turtle. Horn et al. compared TUI
programming and GUI (graphical user interface) programming methods in an
experimental museum exhibition [6]. They counted the successful programming number
and code length created by visiting students, and concluded that more students preferred to
programming in a TUI programming environment.
 In this paper, we present our work of creating a tabletop learning environment using
physical robot, called RoboTable. A prototype application named ExploreRobot is
developed in the RoboTable environment, which allows kids and programming beginners
to easily understand programming basics through direct manipulation and intuitive
feedback. A user study is conducted and the result revealed that such a learning
environment makes learning of robot programming easier in some aspects such as defining
a behavior of the robot and inputting parameters. The proposed method and environment
is expected to have applications for many different learning activities.

533

1. RoboTable Environment

RoboTable in a tabletop platform constructed in our lab [8]. RoboTable integrates DI
(Diffused Illumination) [2] and FTIR (Frustrated Total Internal Reflection) [4] so that it
can simultaneously recognize multi finge
employ physical robots for the RoboTable platform in order to create a tangible interface
that has intuitive kinetic feedback. For tracking robot an image recognition library called
reacTIVision [7] that can identi
used. A robot is controlled by the system via Bluetooth communications. The tracking
scheme and system configuration of RoboTable platform is shown in Fig. 1.

Fig. 1 RoboTable platform: integrated DI and FTIR tracking (left)
and the tabletop system configuration (right)

2. Tangible Programming Prototype

2.1 Implementation

Based on the RoboTable platform, we created a prototype application, which is c
“ExploreRobot”, in order to realize the proposed tangible programming interface.
ExploreRobot is a learning assistant application designed for school students and
programming beginners. The aim of this application was to help users understand the bas
concepts of robot programming. A robot equipped with a virtual sensor is placed in a
virtual maze. An acrylic plate is placed somewhere on the table to indicate the goal of the
robot explorer. A player has to define actions and set events for the robot
the robot have a complete program to find the path to the goal in a maze.

RoboTable Environment

RoboTable in a tabletop platform constructed in our lab [8]. RoboTable integrates DI
(Diffused Illumination) [2] and FTIR (Frustrated Total Internal Reflection) [4] so that it
can simultaneously recognize multi finger touches and conduct object tracking. We
employ physical robots for the RoboTable platform in order to create a tangible interface
that has intuitive kinetic feedback. For tracking robot an image recognition library called
reacTIVision [7] that can identify a fuducial marker attached to the bottom of each robot is
used. A robot is controlled by the system via Bluetooth communications. The tracking
scheme and system configuration of RoboTable platform is shown in Fig. 1.

platform: integrated DI and FTIR tracking (left)
and the tabletop system configuration (right)

Tangible Programming Prototype

Figure 2. ExploreRobot

ased on the RoboTable platform, we created a prototype application, which is c
“ExploreRobot”, in order to realize the proposed tangible programming interface.
ExploreRobot is a learning assistant application designed for school students and
programming beginners. The aim of this application was to help users understand the bas
concepts of robot programming. A robot equipped with a virtual sensor is placed in a
virtual maze. An acrylic plate is placed somewhere on the table to indicate the goal of the
robot explorer. A player has to define actions and set events for the robot
the robot have a complete program to find the path to the goal in a maze.

RoboTable in a tabletop platform constructed in our lab [8]. RoboTable integrates DI
(Diffused Illumination) [2] and FTIR (Frustrated Total Internal Reflection) [4] so that it

r touches and conduct object tracking. We
employ physical robots for the RoboTable platform in order to create a tangible interface
that has intuitive kinetic feedback. For tracking robot an image recognition library called

fy a fuducial marker attached to the bottom of each robot is
used. A robot is controlled by the system via Bluetooth communications. The tracking
scheme and system configuration of RoboTable platform is shown in Fig. 1.

ased on the RoboTable platform, we created a prototype application, which is called
“ExploreRobot”, in order to realize the proposed tangible programming interface.
ExploreRobot is a learning assistant application designed for school students and
programming beginners. The aim of this application was to help users understand the basic
concepts of robot programming. A robot equipped with a virtual sensor is placed in a
virtual maze. An acrylic plate is placed somewhere on the table to indicate the goal of the
robot explorer. A player has to define actions and set events for the robot in order to make

534

 Fig. 2 illustrates the ExploreRobot prototype, which creates a mixed
programming interface that enables basic programming tasks such as finding a s
goal and avoiding obstacles. This programming interface consists of six basic components:
� Robot: A real robot is deployed in ExploreRobot. The robot takes two roles in this

application. In the programming stage, the robot is used as a tangible indi
enables direct manipulation for behavior definition. In the execution stage, the robot is
used as a physical programming executor that behaves following defined program.

� Virtual Sensor: A virtual sensor is a graphical component attached to the
moves with the robot accordingly so that the virtual sensor seems like physically
bounded to the robot. The virtual sensor has a fan
located at the center of the robot. The fan
symmetry axis, which coincides with forward direction of the robot. Each part can
detect either virtual obstacles or the goal plate and notify the robot of detected object
and position (e.g. left or right). Users can adjust the detecting range

� Control Button : Control buttons are graphical buttons surrounding the robot to
provide some specific functions such as record, execute, etc.

� Event Block: An event block is a basic programming module, which indicates a series
of actions regarding a specific event. All the event blocks compose the whole
program.

� Virtual Maze : Virtual maze is a set of rectangle obstacles that
We created a series of mazes with different difficulty
challenge different tasks.

� Goal: The goal of the maze is determined by placing a piece of
plate on the table. In each task, one can easily change the position of the goal by direct
moving the acrylic plate.

2.2 Programming interface

ExploreRobot supports three input methods for programming the robot.
� Direct manipulation: A player can directly manipulate the robot as a tangible token.

Direct manipulation is used as a motion input in order to define the robot’s behavi
(See Fig. 3 left).

� Interactions with digital contents:
the robot, and drag or move other digital contents such as event blocks. Interactions
with digital contents enable players to select functions or bui
blocks (See Fig. 3 middle).

� Multi- touch gesture input:
contents. Multi-touch gesture input is used for adjusting range of the vi
(See Fig. 3 right).

Fig. 3: Input methods for ExploreRobot: input by direct manipulation (left); interact
with digital contents (middle) and input

Fig. 2 illustrates the ExploreRobot prototype, which creates a mixed
programming interface that enables basic programming tasks such as finding a s
goal and avoiding obstacles. This programming interface consists of six basic components:

: A real robot is deployed in ExploreRobot. The robot takes two roles in this
application. In the programming stage, the robot is used as a tangible indi
enables direct manipulation for behavior definition. In the execution stage, the robot is
used as a physical programming executor that behaves following defined program.

: A virtual sensor is a graphical component attached to the
moves with the robot accordingly so that the virtual sensor seems like physically
bounded to the robot. The virtual sensor has a fan-shaped detection area with a vertex
located at the center of the robot. The fan-shaped area is divided into two
symmetry axis, which coincides with forward direction of the robot. Each part can
detect either virtual obstacles or the goal plate and notify the robot of detected object
and position (e.g. left or right). Users can adjust the detecting range and width freely.

: Control buttons are graphical buttons surrounding the robot to
provide some specific functions such as record, execute, etc.

: An event block is a basic programming module, which indicates a series
regarding a specific event. All the event blocks compose the whole

: Virtual maze is a set of rectangle obstacles that the robot cannot pass.
We created a series of mazes with different difficulty levels so that users can
challenge different tasks.

: The goal of the maze is determined by placing a piece of an
plate on the table. In each task, one can easily change the position of the goal by direct
moving the acrylic plate.

ramming interface

ExploreRobot supports three input methods for programming the robot.
A player can directly manipulate the robot as a tangible token.

Direct manipulation is used as a motion input in order to define the robot’s behavi

Interactions with digital contents: A player can touch buttons displayed surrounding
the robot, and drag or move other digital contents such as event blocks. Interactions
with digital contents enable players to select functions or build and organize event
blocks (See Fig. 3 middle).

touch gesture input: A player can use multi-touch gestures for some digital
touch gesture input is used for adjusting range of the vi

hods for ExploreRobot: input by direct manipulation (left); interact
with digital contents (middle) and input by multi- touch gestures (right)

Fig. 2 illustrates the ExploreRobot prototype, which creates a mixed-reality tangible
programming interface that enables basic programming tasks such as finding a specific
goal and avoiding obstacles. This programming interface consists of six basic components:

: A real robot is deployed in ExploreRobot. The robot takes two roles in this
application. In the programming stage, the robot is used as a tangible indicator, which
enables direct manipulation for behavior definition. In the execution stage, the robot is
used as a physical programming executor that behaves following defined program.

: A virtual sensor is a graphical component attached to the robot and
moves with the robot accordingly so that the virtual sensor seems like physically

shaped detection area with a vertex
shaped area is divided into two parts by the

symmetry axis, which coincides with forward direction of the robot. Each part can
detect either virtual obstacles or the goal plate and notify the robot of detected object

and width freely.
: Control buttons are graphical buttons surrounding the robot to

: An event block is a basic programming module, which indicates a series
regarding a specific event. All the event blocks compose the whole

robot cannot pass.
so that users can

an acrylic circular
plate on the table. In each task, one can easily change the position of the goal by direct

A player can directly manipulate the robot as a tangible token.
Direct manipulation is used as a motion input in order to define the robot’s behavior

A player can touch buttons displayed surrounding
the robot, and drag or move other digital contents such as event blocks. Interactions

ld and organize event

touch gestures for some digital
touch gesture input is used for adjusting range of the virtual sensor

hods for ExploreRobot: input by direct manipulation (left); interact
touch gestures (right)

535

2.3 Event-driven architecture

The ExploreRobot application prototype uses the even-driven programming architecture.
A program is composed by a series of events, and particular behaviors regarding each
specific event. An event and the corresponding behavior compose an event-behavior pair,
which is the basic component of the event-driven programming architecture.
 The first version of the ExploreRobot prototype supports a basic detection event: if a
virtual obstacle or the goal enters in the range of the virtual sensor, the detection event is
triggered. Each detection event is identified by both the detected object (obstacle or goal)
and the position (left, right or front). When an event is triggered, the behavior associated
to that specific event is executed subsequently. There is also a special event called
“always”, the behavior which is always executed if there is no any other event triggered.
To define an event-behavior pair in ExploreRobot is quite simple. A player puts the robot
on the table, then the virtual sensor and some buttons appeared subsequently. Moving the
robot to simulate a specific event (i.e. seeing obstacle at left), the player is able to press a
“Record” button in order to define a behavior sequence regarding this specific event, and
then the event block for this specific event is automatically generated (See Fig. 4 left). In
the case there is no special event is simulated, pressing the “record” button generates the
“always” event block. In order to avoid conflict that more than one event occurs, each
event is assigned a priority. In the case of more than one event occurs coincidently, the
behavior associated to an event with a higher priority is executed at first, then events with
lower priorities. All the priority for each event block is hidden; the system handles priority
check automatically. Basically, the “always” event has the lowest priority and the event of
goal detection has the highest priority.

 After an event block generated, the player can directly drag the robot as a motion
input to define the motion trace of the robot. A motion trace is composed with a series of
basic motions such as moving forward, backward, turning left and right. The motion trace
manipulated by the player is automatically decomposed into a motion sequence. Each
motion indicator in the sequence indicates the moving direction and specifies the distance
(in centimeter) or rotation angle (in degree). Once the player confirmed the motion
sequence displayed in the event block, s/he then pushes the “Save” button to finish
recording (See Fig. 4 right).
 One may ask how if a player wants to modify the motion trace during recording?
Actually, the “recording” function does not exactly record everything the player
performed. For example, if a player drags the robot 30cm forward, then pushes it 10cm
back, the system will not record these two motions respectively. Instead, a motion of

Fig. 4: Generating an event block (left) and
defining a motion path for the robot (right)

536

moving 20cm forward will be restored. In other words, the system can automatically
determine the motion sequence with minimum length.
 When the player finishes all the definition of event blocks, he or she can press the
“Play” button to execute the program and see how the robot works. If the robot
successfully reaches the goal, the task is finished. Otherwise the player can pause the robot
at any time and continue to revise his/her own program.
 ExploreRobot programming interface also provides an intuitive management of
programmed event blocks. By simply pressing a button, the event blocks switch between
shown/hidden states so that the player can easily check the maze map or programming
status. If the player wants to delete an existing event block, he or she can just drag that
specific event block into a trash box to perform the deletion.

3. Evaluation Experiment

We have conducted a user study to investigate the effect of using the proposed system in
programming learning activities. The goal of the experiment is to understand effects on
using different programming agent (i.e. physical robot or virtual avatar) and different
method (i.e. TUI programming and GUI programming).

3.1 Experiment design

This study used a 2 (agent) × 2 (method) design. For the agent, there were two conditions:
physical robot (PR) agent and virtual avatar (VA) agent. The method also had two
conditions: graphical programming and tangible programming.
 In order to make reasonable comparisons, we also developed a simple graphical
programming interface for ExploreRobot. All the components in this graphical
programming interface are exactly the same as in the tangible programming interface.
However, instead of direct manipulation for parameter input, this graphical programming
interface provides several event blocks and action blocks, which can be dragged into event
blocks to make a complete event-behavior pair. There is also a slider at the corner of the
table that indicates the parameter of the current action block. Sliding the slider can adjust
the parameter of the current action block.

3.2 Procedure

A total number of 9 participants (6 male, 9 female, average age: 21.4) were recruited from
our university. All participants filled out a questionnaire that surveyed their basic
demographics (e.g. gender, age, programming experience). We have confirmed that each
participant has no knowledge or very few experience about programming. Participants
were given a brief tutorial regarding the basics of the programming environment and
manipulations, such as multi-touch, gesture and direct dragging the robot.
 Then, participants were given another tutorial regarding programming the robot. The
experimenter introduced the event-driven architecture and a sample program, which
enables the robot to explore the maze. Once the participant confirmed that he or she could
understand the program, the participant carried out the four tasks in four different
experimental settings (i.e., one condition was randomly assigned to each task).
 After each condition, participants filled out a questionnaire that included self-report
items. The order in which participant were assigned to the two agents (ATUI and GUI)
was altered. Once the agent was introduced as a real robot or a virtual robot, the order of

537

method (tangible and graphical) was altered as well. All order assignments were
counterbalanced.

3.3 Measure

Evaluation items are scored using self-report questionnaires. The questionnaire includes
five evaluation items that measure users’ perception regarding their programming process.
The five evaluation items are listed below:
� Easy for understanding programming method;
� Easy for setting events;
� Easy for defining behaviors;
� Easy for inputting parameters;
� Easy for imagine the actual movement of the robot.
Each evaluation item uses a 7-point Likert scale, rating from 1 (strongly disagree) to 7
(strongly agree).

4. Result

4.1 Effect on interface

Firstly, a Wilcoxon signed-rank test is conducted in which the interface used in the
programming process (i.e. PR or VA) was the independent factor. Table 1 shows the Z and
p values of each item. Fig. 5 compares mean and SD of three items which fulfilled the
requirement p < 0.05.

From Table 1 and Fig. 5 we can find that the analysis yielded three significant effects of
interface and showed that users felt easier when setting events (PR: M = 5.67, SD = 0.91;
VA : M = 5.17, SD = 1.34), defining behaviors (PR: M = 5.78, SD = 0.94; VA : M = 5.39,
SD = 1.20) and inputting parameters (PR: M = 5.06, SD = 1.39; VA : M = 4.11, SD = 1.28)
with a physical robot. This result gave us reliable evidence that users perceived easier in
programming processes while using a physical robot for the programming interface.

Figure 5

Table 1: Effect on agent

538

4.2 Effect on method

Next, another Wilcoxon signed-rank test is conducted in which the programming method
(i.e. TUI programming or GUI programming) was the independent factor. Table 2 shows
the Z and p values of each item.
 From Table 2 we can find that only “easy for imagining robot’s movement” meets the
requirement of p < 0.05. The analysis yielded one significant effect of programming
method and showed that users felt easier in imagining robot’s movement during
programming process (PR: M = 5.72, SD = 0.96; VA : M = 4.56, SD = 1.20)

4. Conclusion

In this paper, we proposed a novel tabletop learning environment using physical robots. A
prototype application called ExploreRobot is developed for learning programming basics
by defining behaviors for a tangible robot on the tabletop using an intuitive TUI
programming method. We have conducted a comparative user studies with a conventional
graphical programming environment to clarify the problem to be solved, issues to be
investigated and lessons learned for constructing a design guideline of this programming
environment. The result revealed that using a physical robot agent and TUI programming
method makes programming learning easy. In our future work, we will evaluate the
proposed environment in school education with children. In this paper, all the evaluations
were conducted in a single user setting, which needed less complex analyses as compared
with a multi user setting, in order to clarify effects of the proposed environment in a
simpler situation. It is said that learning in a tangible tabletop environment can enhance
interactions between users and support their collaboration. Therefore, to design and
evaluate the system so that it can support collaboration between users is also one of our
important future works. In the current implementation, a robot with simple functions is
used. Thus, we will investigate if the programming technique in the proposed system is
applicable to a robot with more complicated functions.

Acknowledgements

The authors thank Tomoki Fujita, Weiqin Chen, Shogo Onojima, and Akinobu Niijima for
their collaboration and valuable feedback to this project.

References

[1] Frei, P., Su, V., Mikhak, B., & Ishii H. (2000). curlybot: Designing a New Class of Computational

Toys. In Proceedings of CHI ’00 (pp. 129–136). The Hague, The Netherlands: ACM Press.
[2] Roth, T. (2007). FTIR vs DI. Retrieved from http://iad.projects.zhdk.ch/multitouch/?p=47/
[3] Gallardo, D., Julia, C. F., & Jorda, S. (2008). TurTan: a Tangible Programming Language for Creative

Exploration. In Proceedings of TABLETOP ‘08 (pp. 89–92). Amsterdam, the Netherlands: IEEE Press.

Table 2: Effect on method

539

[4] Han, J. (2005). Low-Cost Multi-Touch Sensing through Frustrated Total Internal Reflection. In
Proceedings of UIST ’05 (pp. 115-118). Seattle, WA: ACM Press.

[5] Horn, M. S. & Jacob, R. J. K. (2006). Tangible Programming in the Classroom: A Practical Approach.
In Proceedings of CHI ’06 (pp. 869–874). Montreal, Quebec, Canada: ACM Press.

[6] Horn, M., Solovey, E. & Crouser, R. (2009). Comparing the Use of Tangible and Graphical
Programming languages for Informal Science Education. In Proceedings of CHI ’09 (pp. 975–984),
Boston, MA: ACM Press.

[7] Kaltenbrunner, M. & Bencina, R. (2007). reacTIVision: A Computer-Vision Framework for Table-
Based Tangible Interaction. In Proceedings of TEI ’07 (pp. 69-74), Baton Rouge, LA: ACM Press.

[8] Krzywinski, A., Mi, H., Chen, W., & Sugimoto, M. (2009). RoboTable: A Tabletop Framework for
Tangible Interaction with Robots in a Mixed Reality. In Proceedings of ACE ’09 (pp. 107–114),
Athens, Greece: ACM Press.

540

