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Abstract: During video lectures, learners may have attentional modes such as “follow a 

lecturer's guide (speech and pointers),” “look ahead of spoken parts and actively check slide 

content,” and “roughly browse a slide.” The dynamic change of these modes is useful to 

characterize personal and/or temporary viewing styles. This paper presents a method to analyze 

video viewing styles through gaze behavioral data by using a probabilistic generative model 

with a latent mode variable. In our experiments, we show that the model can infer viewers' 

temporal mode patterns and successfully characterize task-dependent viewing situations.  
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1. Introduction 
 

While clickstream logs on video lectures (e.g., MOOCs) are promising sources to analyze learning 

behavior (Kim et al., 2014), those logs mainly contain users' intentional activities, such as page jumps, 

and it cannot be directly used to understand detailed learners' reaction to video content (e.g., slide 

information, lecture's speech, and pointing actions). Gaze data in video lectures, on the other hand, 

enable us to analyze learners' behavior deeply enough to infer which consisting regions attract/confuse 

viewers (Nguyen & Liu, 2016) and how much viewers followed a lecturer's speech (Sharma, Jermann, 

& Dillenbourg, 2014). 

To understanding learners’ performance and skills, distinctive spatio-temporal gaze patterns is 

often analyzed in gaze studies (Mangaroska, Sharma, Giannakos, Træ tteberg, & Dillenbourg, 2018). 

This gives us insight that such gaze patterns partially reveal viewers' internal process, and in other 

words, there may exist useful “intermediate representation” between gaze patterns and human cognitive 

process. In Kawashima, Ueki, & Shimonishi (2019), a minimal model for viewers’ attentional modes 

during video lectures, such as “roughly grasp slide content,” “actively follow slide content,” and 

“follow a lecturer's guide (speech and pointers)” is introduced. While these modes are not necessarily 

directly related to human attentional modes, inferred modes can be treated as useful intermediate 

representation to characterize viewers’ situations. In this paper, we extend the work by introducing 

probabilistic mode switching model to analyze and visualize learners’ viewing styles in video lectures.  

 

 

2. Multi-mode Gaze Model 
 

The model proposed in Kawashima et al. (2019) is a multi-mode generative model, where a viewer's 

gaze sequence is assumed to be affected by the three component submodels. We first briefly describe 

the model in this section and introduce its extension in Section 3 to model a variety of viewing styles. 

 

2.1 Model 
 

Assume that raw gaze data are converted into a sequence of areas-of-interest (AOIs), which we refer to 

as gaze regions, based on the velocity of eye movements (Salvucci & Goldberg, 2000). Suppose that 

𝑟1, … , 𝑟𝑘−1, 𝑟𝑘 , … , 𝑟𝐾 is a gaze sequence of a viewer, where 𝑟𝑘 ∈  {𝑅1, … , 𝑅𝑁} is a region ID at time 

step , and 𝑅1, … , 𝑅𝑁 are region IDs in a slide. Note that time (or time step) 𝑘 denotes an ordered number 
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of AOI switches. Meanwhile, we use 𝑡𝑘 to describe actual media time (physical time whose origin is the 

start time of a slide) in the video at time step 𝑘. 

 

Mode 0 (base distribution): Attracted by salient regions such as high contrast or important terms, 

modeled by region distribution 𝑃(𝑟𝑘 = 𝑅𝑖 | 𝑚𝑘 = 0) = 𝑎𝑖, 
Mode 1 (region order):  Follow slide content by considering the meaning of content information, 

modeled by transitional probabilities 𝑃(𝑟𝑘 = 𝑅𝑗 | 𝑟𝑘−1 = 𝑅𝑖 , 𝑚𝑘 = 1) = 𝑏𝑖𝑗, 
Mode 2 (lecture's guide):  Follow a lecturer's guide such as spoken words and pointers, modeled by 

time-dependent region distribution 𝑃(rk = 𝑅𝑖 | 𝑡𝑘 = 𝑡,𝑚𝑘 = 2) = 𝑐𝑖𝑡. 
Then, the influence ratio of the above submodels (modes) is assumed to change dynamically: 

 

𝑃(𝑟𝑘| ⋅) =  𝑃(𝑚𝑘 = 0| ⋅)𝑃(𝑟𝑘|𝑚𝑘 = 0) +  𝑃(𝑚𝑘 = 1| ⋅)𝑃(𝑟𝑘|𝑟𝑘−1,𝑚𝑘 = 1) 
                                         +𝑃(𝑚𝑘 = 2| ⋅)𝑃(𝑟𝑘|𝑡𝑘 ,𝑚𝑘 = 2),  

 
where (⋅) denotes the previous gaze regions 𝑟𝑘−1, 𝑟𝑘−2, … and timestamps 𝑡𝑘 , 𝑡𝑘−1, ….  

The probability 𝑃(𝑚𝑘 = 𝑚), 𝑚 ∈ {0, 1, 2}  describes the influence ratio of submodel 𝑚 , 

whose sum is ∑ 𝑃(𝑚𝑘 = 𝑚)2
𝑚=0 = 1. Based on this model, typical situations can be described as 

follows: When a viewer follows the lecturer's guide (spoken words and pointers) at time k, the value of 

𝑃(𝑚𝑘 = 2) becomes higher than 𝑃(𝑚𝑘 = 0) and 𝑃(𝑚𝑘 = 1). Meanwhile, when a viewer follows the 

slide content actively by ignoring the lecturer's guide, 𝑃(𝑚𝑘 = 1) becomes higher. In a time period of 

mind wandering, 𝑃(𝑚𝑘 = 0) get higher due to not following either the content or the lecturer. 

Note that the concept of mode 𝑚 = 2 is closely related to the with-me-ness proposed in Sharma 

et al. (2014) in terms that the corresponding submodel tries to describe specific spatio-temporal points 

that a lecturer attracts gaze of learners. 
 

2.2 Model Training 
 

Suppose that a collection of gaze sequences 𝑟seq
(𝑣)
  (𝑣 = 1,… , 𝑛) from 𝑛 viewers of the same slide is 

given in a model training phase. Using this gaze data, the model parameters 𝑎𝑖, 𝑏𝑖𝑗, and 𝑐𝑖𝑡 is estimated 

based on the maximum-likelihood estimation. This estimation is not straightforward due to the hidden 

variables 𝑚𝑘, whose posterior needs to be estimated simultaneously. That is, this model training can be 

viewed as clustering of gaze patterns to three modes, and therefore the expectation-maximization (EM) 

algorithm can be utilized. 

 The algorithm repeats the E- and M-steps iteratively. In the E-step, the posterior 𝑃 (𝑚𝑘
(𝑣)
|𝑟seq
(𝑣)
) 

for each time step 𝑘 is computed using the model with current parameters during iterations. Then, all 

the parameters are updated in the M-step, where additive smoothing (in our experiments, additional 0.1 

count) was used to avoid the zero-frequency problem. 

 

 

3. Probabilistic Mode-Switching Model 
 

3.1 Inference of Mode Sequences with a Probabilistic Mode Transition 
 

Given a newly observed gaze data 𝑟seq, a mode posterior 𝑃(𝑚𝑘 = 𝑚  | 𝑟𝑠𝑒𝑞) = 𝛾𝑘(𝑚)   (𝑚 = 0, 1, 2,

𝑘 = 0, 1, 2, … , 𝐾) can be obtained with a similar procedure as the E-step in the training phase. The 

posterior can be considered as the inferred ratio of the influence of each submodel. An inferred 

sequence of 𝛾𝑘(𝑚) contains useful information of when and which mode the viewer took during the 

video viewing situations. For example, the value of 𝛾𝑘(2) is expected to be large for time 𝑘 when the 

viewer focuses on the lecturer's talk (guide information).  

To statistically analyze inferred mode sequences, we do not directly use the patterns of the 

sequences but utilize the temporal structure behind the patterns. Specifically, we extend the model 

described in the previous section by introducing mode switching model with the following 

mode-transition probability: 
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𝑃(𝑚𝑘 = 𝑞|𝑚𝑘−1 = 𝑝) = 𝐴𝑝𝑞 , 

 

where 𝑝, 𝑞 ∈ {0, 1, 2}. Note that this extension corresponds to the model of state transition of hidden 

Markov models (HMMs), while its states (modes) and emission probabilities are specifically designed 

to describe viewers’ situations as explained in Section 2.1. 

 

3.2 Model Training 
 

Now the extended model has a parameter set {𝑎𝑖, 𝑏𝑖𝑗, 𝑐𝑖𝑡 , 𝐴𝑝𝑞}. Since the goal of this study is to 

characterize video viewing styles, we introduce an assumption that these parameters can be divided into 

two: viewer-independent (shared) parameters 𝜃𝑠ℎ𝑎𝑟𝑒𝑑 = {𝑎𝑖, 𝑏𝑖𝑗, 𝑐𝑖𝑡} and viewer-dependent parameters 

{𝐴𝑝𝑞
(𝑣)
}. By using the shared parameters, modes and their switching can be analyzed in the common 

space. Note that we add superscript (𝑣) to explicitly denote that the mode-transition probabilities 

depend on viewer 𝑣.  

 For better convergence of the model parameters, we also divide the training into two steps. In 

the first step, viewer-independent parameters 𝜃𝑠ℎ𝑎𝑟𝑒𝑑  are estimated without mode switching model 

(introduced in Section 2). Then, viewer-dependent parameters {𝐴𝑝𝑞
(𝑣)
} are estimated for each of viewer 𝑣 

to characterize the structure of viewer 𝑣 ’s mode transition. In this second step, all the 

viewer-independent parameters are fixed. As for initial mode probabilities 𝑃(𝑚1), we used equal 

probabilities 0.5 for 𝑚1 = 0, 2, and 0 for 𝑚1 = 1. 

 

3.3 Comparing Mode-Switching Structures  
 

Once each viewer’s mode-switching behavior is encoded by the model above, dissimilarity between 

two models can be introduced. This dissimilarity can be considered as a pseudo distance between two 

viewing patterns. Since the extended model is analogous to HMMs, we here use a distance measure 

proposed in Juang & Rabiner (1985), which utilizes Kullback-Leibler (KL) divergence. 

 Let 𝜃(𝑣1) = 𝜃shared ∩ {𝐴𝑝𝑞
(𝑣1)} and 𝜃(𝑣2) = 𝜃shared ∩ {𝐴𝑝𝑞

(𝑣2)} be the parameter sets of viewer 𝑣1 

and 𝑣2, respectively. Then, the divergence-related value can be computed by using log likelihood: 

 

𝐷(𝑣1||𝑣2) =
1

𝐾(𝑣1)
[log𝑃 (𝑟seq

(𝑣1)|𝜃(𝑣1)) − log𝑃 (𝑟seq
(𝑣1)|𝜃(𝑣2))], 

 

where 𝐾(𝑣1)  is the length of gaze sequence 𝑟seq
(𝑣1) . Considering the non-symmetric property of KL 

divergence, the pseudo distance can be defined as the following average: 

 

Dist(𝑣1, 𝑣2) = (𝐷(𝑣1||𝑣2) + 𝐷(𝑣2||𝑣1))/2. 
 

4. Experiments 
 

In this experiment, we verify the proposed model in terms of its capability of characterizing and 

visualizing video viewing styles. To focus on the evaluation of the proposed model itself, we conducted 

laboratory experiments with designed settings. Specifically, we prepared not only (a) a normal 

video-viewing situation but two additional artificial situations: (b) with a sub task and (c) with an edited 

content (static slides with no sound). Since the ground truth of viewers' internal states cannot be 

obtained, we considered that these designed situations highly bias their internal states and simulate 

some extreme situations such as mind wandering (Mills, Bixler, Wang, & D’Mello, 2016; Hutt et al., 

2017) or ignoring a lecturer's guide. Self-reporting or think aloud protocol is another option to obtain 

ground truth of internal process, but we do not take this option to avoid an additional task affecting gaze 

behavior. 
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4.1 Experimental Settings 
 

33 university students were recruited to conduct the lab-setting research. Each of the students was 

explained a summary of our research and signed an informed consent form upon the arrival. The 

explanation of the research objective was abstract enough to avoid affecting their gaze behavior. 

 

4.2 Tasks and Content 
 

Video-viewing tasks were assigned to each of the 33 participants. They were asked to (i) watch a video 

on a monitor and (ii) answer several written questions related to the content of the watched video. The 

post-questions were prepared to make each participant concentrated enough on the video content and to 

measure the degree they could follow the content. Confidence of each answer were also collected in 

five-point Likert scale, and the prior-knowledge of each question was also asked to verify that most of 

the participants did not know the question-related content before the experiment. 

As described in the beginning of this section, the participants were divided randomly into the 

following three groups (11 participants each): 

(a) Group 1 (normal):  No additional task was assigned. 

(b) Group 2 (sub task):  Additional task of mental calculation (repeatedly subtract 3 from 1000) was 

assigned from slide 2. 

(c) Group 3 (no guide):  No additional task but an edited video (a sequence of static slides with no 

sound) was displayed from the middle (slide 3-); the length of the presence of each slide was also 

edited according to the density of the content. 

As for the sub task, participants were asked to vocalize each result of the mental calculation, but the 

vocalized values were not checked. The confidence of the answers to the post-questions was low 

enough in most of the questions, and the scores of Group 2 were lower than Group 1 for all the 

questions. 

The topic of the content was “inferential statistics” from JMOOC gacco (https://gacco.org/), 

and the length of the video content, consisting of 4 slides, was about 10 minutes. The screen of the video 

consisted of a slide and a lecturer. The slide was partially and temporarily overlaid by the lecturer's arm 

and pointers. In this experiment, the 3rd slide was used, which contained only texts. 

 

4.3 Data acquisition 
 

Tobii X120 eye tracker was used to measure participants' gaze points on a screen with sampling rate 60 

Hz. We here used this lower sampling rate because we focus on analyzing fixations rather than saccadic 

eye movements. Each participant was asked to sit in front of the screen where chin rest was used to 

reduce measurement noise as much as possible. While the used device was robust against head 

movements to some extent, we decided to use this setting to focus on the verification of the proposed 

model and algorithm. In the identification step of fixations, lack of data less than 150 ms was considered 

as instantaneous noise and interpolated using surrounding data. 

While automatic region segmentation is possible to define regions, in this experiment, we 

manually segment regions based on the meaning of words for the sake of avoiding region segmentation 

errors. Region IDs were basically numbered from top left to bottom right, which roughly coincided with 

the order of reading the slide content. 

 

4.4 Results 
 

The two-step training described in Section 3 was applied to the acquired gaze sequences on the slide 3: 

The shared parameters 𝜃shared were estimated by normal-task data in the first step, and mode-transition 

probabilities were obtained for each of the viewers in Group 1-3 in the second step. During the second 

step, each viewer’s mode posterior sequence was also computed. 

Figure 1 shows examples of mode sequences from each of the three tasks (Group 1-3). It can be 

seen that mode 1 and mode 2 are dominant in (a) normal task and (b) sub task while only mode 1 is 

dominant in (c) no guide. Compared to Group 1 (normal task), mode 0 appears more frequently in 

Group 2 (sub task). These trends can be seen consistently in most of other viewers’ sequences. 
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Figure 1. Examples of mode-posterior sequences in the three situations with (a) normal task (Group 1), 

(b) sub task (Group 2), and (c) no guide (Group 3). 

 

 
Figure 2. Statistics of mode-transition probabilities estimated through the switching-mode model in the 

three situations with (a) normal task (Group 1), (b) sub task (Group 2), and (c) no guide (Group 3). 

 

 
Figure 3. Results of multi-dimensional scaling of dissimilarities of trained models (the numbers 

correspond to viewers’ IDs): (a) dissimilarity structure among normal-task (Group 1) viewers are 

depicted in 2-d space. (b) dissimilarity structure of all viewers in Group 1-3 are visualized in 2-d space. 

Colors of marker corresponds to the groups (assigned tasks). 

 

 

To analyze the difference of viewing styles in Group 1-3, we plot the statistics of parameter 

distributions of mode-transition probabilities {𝐴𝑝𝑞} in Figure 2. In normal-task group (Group 1), there 

were less transitions to mode 0. In addition, the probability of self-loop of mode 0, which corresponds to 

the trend of duration length of the mode, also took very small values. This can be interpreted that in 

normal-task situations, viewers tended to take mode 1 or mode 2 most of the time by actively following 
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slide content and/or the lecturer’s guide compared to sub-task situations. On the other hand, as can be 

seen in Figure 2 (c), Group 3 (no guide) had high self-loop probability of mode 1, which means they 

mostly took mode 1 (follows slide content). This is natural since there was no lecturer’s guide (e.g., 

speech). 

To demonstrate how the model can be used to discriminate video viewing styles, we visualized 

the structure of dissimilarities of trained models from each of the viewers. Figure 3 (a) shows the plot of 

Group 1 structures. Here, multi-dimensional scaling (MDS) was used to visualize the dissimilarity 

structure in the 2-d Euclidean space. From this figure, we can find which viewer’s behavior was 

different from the others. For example, viewer 18, plotted far from the remaining, had longer duration of 

mode 0 compared to the others. Figure 3 (b) is also the visualization with MDS but all the viewers’ 

models were used. Here, the difference of the tasks can be clearly observed in this visualization. 

 

 

5. Conclusion 
 

This paper proposed a method to characterize and visualize video viewing styles during video lectures 

using a probabilistic mode-switching model. The model consists of three designated submodels to 

extract and interpret key features in video viewing gaze behaviors, while it has similar structure as 

HMMs. Through the analysis of mode-transition probabilities and visualization, the proposed model 

successfully distinguishes the difference of gaze behavior in different tasks. While the assigned tasks 

were artificially designed in this study, we believe that the proposed technique can be used to find “in 

which period” each learner has non-typical behavior. Then, this information may help us to design 

personalized feedback to assist learners by providing information for self-assessment or further study 

and also to improve learning materials. Another interesting question is how the extracted viewing styles 

are related to leaners’ performance, which should be investigated in the future work with larger data.  
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