
Liu, C.-C. et al. (Eds.) (2014). Proceedings of the 22nd International Conference on Computers in
Education. Japan: Asia-Pacific Society for Computers in Education

37

An Online System for Scoring and Plagiarism
Detection in University Programing Class

Asako OHNO*, Takahiro YAMASAKI, and Kin-ichioroh TOKIWA

Faculty of Engineering, Osaka Sangyo University, Japan
*ohno@eic.osaka-sandai.ac.jp

Abstract: Scoring and plagiarism detection in university programming classes are important
but time-consuming and burdensome tasks for teachers. In this paper, we explain about the
structure and functions of the online education support system developed for university
programming class. The system mainly provides two functions: scoring function and plagiarism
detection function implementing two different kind of similarity measuring methods that had
been proposed in the previous studies. Each of the methods calculates similarity between a pair
of source codes in different aspect: content-based similarity and style-based similarity. This
paper also describes how those two different methods work for the system to provide each
functions with summarized explanations of each of the methods.
Keywords: Source code similarity, programming education, online education support system

1. Introduction

There have been many education support systems proposed for programming class. Along with the
recent diffusion of Java in university programming classes, many of the system are aiming to score or
detect plagiarism among Java source files (Ihantola, et al., 2010). Another survey said it was difficult
to evaluate which one of the proposed systems was the most efficient because many of them applied
the system to the source codes with were in designated formats (Queirós and Leal, 2012).
 There are some issues to be considered regarding the nature of source codes produced as
assignments in programming classes when providing scoring and plagiarism detection function. For
example, source codes produced as assignments are generally short in length so that it difficult to
quantify feature that contains rich enough information to represent its algorithmic or structural features.
This characteristic makes it difficult to measure similarity between model answer and students’ source
codes. It may also difficult to find plagiarism from a pair of short source codes. Further, regarding
plagiarism detection function, it is difficult to distinguish similarities in nature with the ones caused by
plagiarism because generally, source codes produced in programming classes are produced to achieve
the same purpose and the students are often ordered to use the same algorithms that they had just learned
in their class. We have developed an education support system for (mainly Java, but also applicable for
C) programming class that implemented two similarity measuring methods: FRef (Ohno and Murao,
2007) that quantifies content-based similarity from short source codes by using arbitrary-chosen
reference source codes as scoring function and CM Algorithm (Ohno and Murao, 2011) that quantified
author’s coding style feature instead of content-based feature by training a set of hidden Markov models.
In this way, we can achieve plagiarism detection robust against disguising copied source codes and
ghost writing which were both difficult to deal with content-based similarity measurements.
Furthermore, there is also a possibility of reducing psychological burdens for both teachers and students
through the plagiarism detecting process.

The rest of the paper is organized as follows: we explain about the summarized procedures and
characteristics of two different methods in Section 2, explain about structure and main functions
provided to teachers and students via web-based GUI in Section 3, and summarized the paper with
future works in Section 4.

2. Implemented methods
 In this study, we developed an online education support system for university programming
class. To provide scoring and plagiarism detection function, the system is implementing two kinds of

Liu, C.-C. et al. (Eds.) (2014). Proceedings of the 22nd International Conference on Computers in
Education. Japan: Asia-Pacific Society for Computers in Education

38

similarity measuring methods: FRef and CM Algorithm. Table 1 summarizes the differences in two
methods.

Table 1: Differences in proposed two similarity measuring methods

Method FRef CM Algorithm

Usage Scoring, Source code retrieval Plagiarism detection, Teaching coding
standard

How to calculate
similarity

Calculate a reference vector with a
number of reference source code and
calculate Euclidean distance between
two source codes’ reference vectors

Input a submitted source code and
calculate output probability of the

coding models (HMM), and compare
the result with the model answer’s case

Similarity criteria Content-based similarity Style-based similarity

FRef is originally proposed to find similar source codes in the repository. As a preprocessing, a source
code is firstly tokenized and normalized to be represented as a sequence of tokens. A number of
reference source codes had been chosen arbitrary from the repository are also transformed into token
sequences. By using two kinds of token sequences, a set of co-occurrence matrices each of which
represents distributions of shared tokens between the two sequences are generated. Then the distribution
tendency of the shared tokens is quantified by calculating 5 kinds of Textural Features. The 5 textural
features for each of the co-occurrence matrices are treated as elements of a feature vector called
reference vector. In this way, content-based feature of a source code is represented relatively by
utilizing a number of reference source codes as a number of different bases. The detailed procedure of
FRef can be found in the former work (Ohno and Murao, 2007).
 As the preprocessing of CM Algorithm, a source code is tokenized and normalized into one of
the predefined three kinds of tokens groups: basing point tokens, identification tokens, and others. The
tokens used in most source codes regardless the kind of programming languages, such as braces (ex.
``{''), assignment operators (ex. ``=''), comments, punctuation marks (ex. ``;'') are treated as one of 14
types of basing-point tokens. In CM Algorithm, we quantify the superficial feature of source code files
occur regardless of the content as the author’s coding style feature. The feature is defined as the
occurrence pattern of adjacent tokens of basing point tokens called identification tokens, i.e. 1 to 4-
letter spaces, tabs, and linefeeds. The remaining tokens are called and normalized as other tokens.
After representing a source code by a token sequence consists of one of the three groups of tokens, a
token sequence is divided into a number of subsequences by using other tokens as delimiters to fit as
input data of coding models. The structure and kinds of parameters of the coding models are based on
hidden markov model. The coding style feature of author is represented as parameters and structures of
a set of 28 coding models. Each of which represents different parts of the author’s coding style. The
detailed procedure of CM Algorithm can be found in the former work (Ohno and Murao, 2011).

igure 1. An overview of the developed system. Figure 2. Examples of similarity calculation results.

Liu, C.-C. et al. (Eds.) (2014). Proceedings of the 22nd International Conference on Computers in
Education. Japan: Asia-Pacific Society for Computers in Education

39

3. About the system

Figure 1 shows an overview of the system. The system consists of two similarity measurement
tools developed in Java, GUI and controller of the system developed in PHP and Database
Management System. Figure 2 shows examples of similarity calculation results provided for teachers
via web-based GUI. The content-based similarity calculated by FRef is utilized for scoring (left) and
the style-based similarity calculated by CM Algorithm is utilized for plagiarism detection (right). As
shown in Figure 4, the repository of the system consists two parts: a database utilized in our system and
a data set of source code files. A database contains users’ information such as ID and password for
teachers and students, user profile for students such as his/her coding style feature, progress of
assignments, information of assignments such as questions and answers, information of grading such
as scores and possibility of plagiarism for each of the assignments. A data set of source code files is
only utilized at the preparation phase; that is, calculation of reference vectors for source code similarity
measurement and training of coding models to represent students’ coding style features utilized for
plagiarism detections. Another chance is that when a source code is newly posted, modified, or delated.

Figure 4. An overview of the repository.

4. Conclusion

In this paper, we developed an online education support system that provides scoring and
plagiarism detection functions for the users accessed to the system via web-based GUI. The
system is implementing two different kind of similarity measuring method each of which had
special features that proved high accuracy in source code similarity measurement according to
content- and style-based similarities. As a future work, we apply the system into the real-world
programming class for performance evaluation and modification.

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B), the
grant number is 24700918.

References
Queirós, R. and Leal, J. P. (2012). Programming Exercises Evaluation Systems - An Interoperability Survey.

Proceedings of the 4th International Conference on Computer Supported Education, 1, 83-90.
Ihantola, P. et. Al (2010) Review of recent systems for automatic assessment of programming assignments,

Proceedings of the 10th Koli Calling International Conference on Computing Education Research, pp.86-
93.

Ohno, A. and Murao, H. (2007). Measuring source code similarity using reference vectors. International Journal
of Innovative Computing, Information and Control, 3(3), 525-538.

Ohno, A. and Murao, H. (2011). An Author Identification of In-Class Source Codes by using the Forward-
Backward Coding Models. ICIC Express Letters Part B: Applications, 2(2), 453-458.

