
Liu, C.-C. et al. (Eds.) (2014). Proceedings of the 22nd International Conference on Computers in 
Education. Japan: Asia-Pacific Society for Computers in Education 

 

Structured Explanation Generation for 
Conceptual Understanding in Physics 

 
Tomoya HORIGUCHIa*, Takahito TOUMOTOb & Tsukasa HIRASHIMAc 

a Graduate School of Maritime Sciences, Kobe University, Japan 
b Faculty of Engineering Division II, Tokyo University of Science, Japan 
c Department of Information Engineering, Hiroshima University, Japan 

* horiguti@maritime.kobe-u.ac.jp 
 

Abstract: In science education, usual problem practice hardly helps students reach 
‘conceptual understanding’ with which they can solve various problems by making 
appropriate models of target systems. Students often superficially read the solution of a 
problem and apply it wrongly to others without understanding the model. It is difficult to teach 
how to make appropriate models because model-making expertise includes a lot of implicit 
knowledge. In this paper, we propose a general framework for systematically describe such 
knowledge, which makes it possible not only to explain various model and difference between 
them but also to design/sequence a set of problems appropriate for promoting conceptual 
understanding. Our framework was proved useful through a preliminary experiment in which 
the explanations generated based on our framework promoted subjects’ conceptual 
understanding in mechanics. 
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1. Introduction 
 
In science education, one serious drawback of current 'problem practice' is that most students fails to 
acquire the ability to make an appropriate model for a given task. A domain expert (such as physicist) 
can model not only the behavior of a system in question, but also she/he can do so in various tasks. 
Her/his model is always necessary and sufficient for answering the question. Such expertise consists 
of identifying the structure/state of the system in question and deciding the applicable principles/laws 
for modeling the behavior of the system. We call such ability 'conceptual understanding' of the 
domain. 

Needless to say, it is very difficult for students to reach such an understanding through 
problem practice. Instead of considering the model, they often rely on the 'solution' they previously 
learned (e.g., the procedure of calculation). As a result, they wrongly apply the solution of one 
problem to another in which the solution is inapplicable. They also can't apply the solution they 
previously learned to another in which the solution is applicable. Even experience in many problems 
doesn't help them (Bransford, Brown and Cocking, 2000; VanLehn, 1998; VanLehn and van de Sande, 
2009). Without models, the students occasionally succeed (by accident), and fail in many cases. 

The major problem is that novice students tend to generate naive representation of a problem 
focusing on its superficial features (called 'surface structure'). They can't generate the representation 
based on the structural features (called 'physical structure') (Chi, Feltovich and Glaser, 1981; Larkin, 
1983; Larkin, 1985). Therefore, instead of applying principles/laws to make the model, they often 
apply inappropriate solution based on the superficial similarity between problems (VanLehn, 1998), 
or use general strategy for operating mathematical equations without considering their physical 
meanings (Larkin, 1981). 

In order to reach conceptual understanding, therefore, students need to learn (1) to infer the 
structural features of problems from the superficial features, and (2) to apply appropriate 
principles/laws to structural features to make models necessary for solving problems. For assisting 
them in problem practice, it is necessary to explain not only how each problem is solved but also why 
the solution is possible and what physical meaning it has. That is, it must be explicit why the 
principles/laws are applicable to the given situation (i.e., surface structure) and what physical meaning 
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(physical structure) they imply. Additionally, it is important to explain not only the solution of a 
problem but also the relation (difference) between problems, that is, how the solution (applicable 
principles/laws) changes when the situation (problem) is changed. Furthermore, it would promote 
such learning to provide students with an appropriately designed and sequenced set of problems 
(Scheiter and Gerjets, 2002; Scheiter and Gerjets, 2003; VanLehn and van de Sande, 2009). 

In current problem practice, such instruction has been rarely focused on, at most given by a 
few (experienced) teachers individually and implicitly. Especially, there have been few intelligent 
tutoring systems which can explain the relation between arbitrary two problems, and adaptively 
sequence problems considering the learning effect of order. We think this is because most of the 
knowledge necessary for such instruction is implicit and difficult to systematize, therefore there have 
been no general framework for indexing various types of problems. 

In this paper, we propose a general framework for indexing problems, based on which 
explanation generation and problem sequencing mentioned above can be automatized. In our 
framework, making a model in physics is regarded as a process in which various constraints (applied 
principles/laws and modeling assumptions) are imposed on the target system and its behavior. A 
model is regarded as the set of constraints. We first formulate the model-making process in physics, 
then analyze the constraints which compose a model to systematize them based on their physical 
meanings and roles (functions). After that, we describe the applicable conditions of principles/laws in 
physics as a set of constraints. The constraints classified/defined in this manner are easily assigned to 
the situation of a problem. There are also some groups of constraints which are 'exclusive' each other 
(i.e., can't be valid simultaneously). Therefore, based on such classification and exclusiveness of 
constraints, it becomes possible to explain what physical meaning (structural features) superficial 
features of a problem have, what principles/laws are applicable to them and how applicable 
principles/laws change when the situation is changed. By indexing problems with this framework (we 
call it 'Semantics of Constraints: SOC'), it becomes possible to automatically extract the 'differences 
between problems' which is necessary for the comparison and sequencing of problems. 

We first discuss the required knowledge and assistance necessary for conceptual 
understanding based on current research, then introduce the SOC framework. After that, we show the 
method for generating SOC-based explanations. The results of preliminary experiment are described 
which proved the usefulness of our framework. Finally, we conclude this paper and mention our 
future work. 
 
 
2. Conceptual Understanding and Assistance 
 
Research on problem-solving has revealed the knowledge structure domain experts in science have 
(Chi, Feltovich and Glaser, 1981; Larkin, 1981; Larkin, 1983; Larkin, 1985; VanLehn, 1998; 
VanLehn and van de Sande, 2009). Experts can (1) infer the structural features of problems with 
scientific concepts from the superficial features and generate the representation to which formal 
operations are applicable. They can also (2) generate an appropriate plan for solving the problem by 
operating the representation with the knowledge about qualitatively interpreted principles/laws. It is 
supposed that experts have acquired such knowledge by inducing the essential features through 
comparison of many problems and by transforming them into (some kinds of) 'schemata' or 
'production rules' (VanLehn and van de Sande, 2009). It is, however, difficult for students reach such 
an understanding through usual problem practice. Even instructional innovations based on recent 
learning science research have limitedly improved students' understanding (Bransford, Brown and 
Cocking, 2000). 

In order to promote such knowledge acquisition, it is effective to appropriately design a set of 
problems which includes positive/negative examples and ‘near misses’ of various problem categories 
and to provide them in appropriate order to students (VanLehn and van de Sande, 2009) (in fact, it is 
reported problem order greatly influences learning (Scheiter and Gerjets, 2002; Scheiter and Gerjets, 
2003)). In order to do that, it is necessary to explicitly describe (1) the superficial/structural features 
of problems and their relations, and (2) qualitative interpretations of principles/laws and their means 
of application. However, since most of such knowledge is implicit, there have been no general 
framework for systematically describe such knowledge. We think this is the reason though knowledge 
structure necessary for expertise was revealed and an effective instructional method was proposed, it 
haven't been widely practiced. The framework we propose makes it possible to systematically 
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describe such knowledge, based on which the design of a set/sequence of problems and explanation 
generation for promoting conceptual understanding become possible. 
 
3. Semantics of Constraints 
 
Given a physics problem (which consists of a physical system and query), one makes a model 
necessary and sufficient for answering the query by embodying an appropriate part of the domain 
theory. Domain theory consists of a set of propositions each of which describes a principle/law, its 
applicable condition and resulting constraint(s) on the attribute(s) of the system. Constraints by 
embodied principles/laws are called the 'physical phenomenon constraints (PPCs).' 

In making a model, various modeling assumptions are set for selecting appropriate 
principles/laws. Modeling assumptions define the structure/behavioral range of a system and physical 
phenomena to be considered. Since embodied physical phenomenon constraints are valid under some 
modeling assumptions, applicable conditions of principles/laws can be described with a set of 
modeling assumptions. That is, a physical phenomenon constraint always has its corresponding 
modeling assumptions. Constraints by modeling assumptions are called the 'modeling assumption 
constraints (MACs).' 

Boundary condition of a system is given by the 'boundary condition constraints (BCCs).' They 
define the influence from the outside of the system. Making the influence which cannot be or need not 
be calculated with a model means defining the boundary of the model (i.e., what physical processes 
are considered/ignored). That is, a BCC always has its corresponding modeling assumptions. 

In our framework, a model is the union of physical phenomenon constraints, boundary 
condition constraints and modeling assumption constraints. Usually, only the first two constraints are 
written as a model while the last constraints are remained implicit. However, MACs gives the validity 
to PPCs and BCCs. When modeling assumptions are changed, physical phenomena and boundary 
conditions also qualitatively change. In order to make a model correctly, therefore, it is necessary to 
under-stand the physical meaning of the constraints based on modeling assumptions (i.e., why an 
assumption is set and what role it plays). In most cases, such knowledge is acquired by a few students. 
In this research, we develop a framework for describing such knowledge explicitly, based on which 
the function for promoting conceptual understanding is designed. In the following two subsections, 
we elaborate on each class of constraints (BCC is omitted owing to limited space) to systematize their 
physical meanings and relations. 
 
3.1 Modeling Assumption Constraints (MACs) 
 
Modeling assumption constraints define the physical processes considered/ignored in a model. They 
are classified in two ways from different viewpoints: structural and functional. 

The structural viewpoint focuses on defining the structure and its state of a model. The 
'physical structure constraint' specifies what kind of objects, relations and their attributes in a system 
are considered. It corresponds to selecting a viewpoint, granularity or coordinate system of a system. 
An example is the specification about whether their mechanical relations/attributes (e.g., mass, 
applied forces) or their electrical ones (e.g., current, resistance) are considered. On the other hand, the 
'operating range constraint' specifies the range within which a model is valid since physical 
phenomena occur assuming a system is in a specific state. For example, a model of a resistance 
assuming its value is constant needs the specification that its current and voltage are within the 
proportional range. 

The functional viewpoint focuses on defining the boundary of a model to specify what kind of 
physical processes are considered/ignored. The 'process consideration constraint' makes such selection 
about physical processes of the same granularity (where, the 'out-sourcing/black-boxing constraint' 
ignores a physical process by put-ting it out of the system or into a black box regarding its effect as a 
boundary condition, and the 'process selection constraint' simply ignores a physical process and its 
effect). For example, assuming constant voltage supplied from outside is an out-sourcing constraint. 
Considering two parallel-connected resistors as a compound re-sister is a black-boxing constraint. 
Considering/ignoring the friction between two objects is a process selection constraint. The 'physical 
world constraint' maintains the fundamental laws of the physical world, such as 'rigid objects never 
overlap.' More microscopic physics is necessary to explain why this constraint is valid, that is, it 
specifies the physical processes of smaller granularity are ignored. The 'process simplifying 
constraint' substitutes the simplified process for an original complicated process in order to make the 
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(mainly mathematical) calculation with a model easier. An example is to consider the behavior of a 
pendulum with small amplitude as simple harmonic oscillation (not as circular motion). 

Constraint classes from the structural viewpoint are useful for enumerating modeling 
assumptions because they rather suggest the components and their relations of a system. For example, 
when a variable in an equation stands for a physical quantity, it is easy to infer an object and its 
attribute corresponding to the quantity is considered (which are physical structure constraints). 
Constraint classes from the functional viewpoint are useful for considering the meaning of modeling 
assumptions because they rather suggest the process structure (processes considered and their 
relations). For example, considering/ignoring a physical attribute (which is a physical structure 
constraint) suggests a physical process concerning the attribute is considered/ignored (which is a 
process selection constraint). That is, the classes from the structural view-point rather concern the 
surface structure of a problem, while the classes from the functional viewpoint rather concern its 
physical structure. Furthermore, as shown above, the classes from both viewpoints are related to each 
other based on their physical meanings. Therefore, with these classifications, it becomes possible to 
systematically describe the knowledge about the relation between superficial and structural features of 
problems. 

Additionally, there are often sets of modeling assumption constraints which are mutually 
exclusive (can't be assumed simultaneously). For example, in the same time interval, 'transient state' 
and 'steady state' (which are operating range constraints) can't be assumed simultaneously. In the same 
(part of a) system, 'consider friction' and 'not consider friction' (which are process consideration 
constraints) can't be assumed simultaneously. Such exclusiveness between modeling assumptions 
gives important clues to identify the differences between models/problems (see section 4.2). 
 
3.2 Physical Phenomenon Constraints (PPCs) 
 
Relatively simpler physical phenomenon constraint is the 'physical device constraint' which arises 
within a component of a system. That is, it is a 'local constraint.' Since it indicates the physical 
property of the component, each domain has its specific physical device constraints (for example, 
Ohm's law constrains the values of current and voltage in an electric device). In contrast, there are 
'global constraints' which indicates the behavior of multiple components or the whole system. Global 
constraints are classified as follows. 

In general, a physical system evolves through time, starting from an initial state. It is either (1) 
changing dynamically, (2) in a steady state or (3) changes discontinuously. Therefore, we call the 
constraints in these states, the 'dynamic change constraint,' the 'steady state constraint' and the 
'discontinuous change constraint,' respectively. Additionally, when a quantity is conserved through 
time, the constraint which indicates its amount is the same at arbitrary two time points is called 
'conservation law constraint.' 

Dynamic change constraint constrains the behavior of a system in a time interval during 
which it is changing dynamically. It often indicates the relation between the driving power of dynamic 
change and the influences on it. For example, Newton's second law (equation of motion) relates an 
object's acceleration with the forces applied to it. Steady state constraint constrains the behavior of a 
system in a time interval during which it is in a steady state. It indicates the balance/cancellation 
between influences on the driving power of dynamic change. An example is the equation of balance 
of forces about an object at rest. Discontinuous change constraint constrains the behavior of a system 
at a time point on which it changes discontinuously. It indicates the relation between the amounts of a 
quantity before and after the change. An example is the formula of coefficient of restitution. A 
quantity is called a 'conserved quantity' when its amount is constant during the temporal evolution of a 
system. Conservation law constraint indicates the amounts of a conserved quantity at arbitrary two 
time points are the same. An equation of heat exchange between two objects and an equation of 
conservation of energy/momentum are the examples. 

A global physical phenomenon constraint aggregates a set of local physical phenomenon 
constraints. For example, Newton's second law (equation of motion), which is a dynamic change 
constraint in mechanics, includes a set of local constraints each of which indicates a force applied to 
the target object (physical device constraints such as elastic force, friction). Such inclusion relation 
between PPCs gives important clues to identify the dominant principle(s)/law(s) in solving a problem. 

Additionally, there are often sets of physical phenomenon constraints of which modeling 
assumptions (preconditions) are mutually exclusive. These PPCs are never simultaneously valid in the 
same state of the same system. For example, since 'static friction' and 'kinetic friction' have exclusive 
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preconditions (operating range constraints) about a contact surface of two objects, they are never valid 
simultaneously at the same surface. The first three global PPCs (i.e., dynamic change, steady state and 
discontinuous change constraints) are exclusive for the same reason. They often entirely change each 
other when preconditions are changed. For example, suppose a mechanical system is in a steady state 
by assuming 'friction' which cancels other forces. When the assumption is changed to 'frictionless,' the 
system can dynamically change. Such exclusiveness between PPCs gives important clues to identify 
the differences between models/problems (see section 4.2). 
 
 
4. Explanation Generation 
 
4.1 Framework of model-making process description 
 
In our framework, each principle/law is described as a 'model fragment' (Falkenhainer and Forbus, 
1991) which consists of its applicable condition and its consequence(s). Applicable condition is 
described as a set of modeling assumption constraints, while a consequence is described as a physical 
phenomenon constraint. A model consists of the union of PPCs given by instantiated model fragments, 
MACs giving applicable conditions for them, and boundary condition constraints given in a problem. 
(Note that an instantiated 'model fragment' is distinguished from 'model fragment class' which 
describes a principle/law itself.) A model-making process (i.e., solution) is described as the procedure 
in which model fragments are applied (instantiated) in turn to the situations (represented with MACs 
and BCCs) to yield new consequences (represented with PPCs). (Note that a consequence of a model 
fragment can be the condition for others.) 

Figure 1a and 1b show examples, in which it is explicitly described why/how each 
principle/law is applied to the given situation. In contrast, usual description of solution focuses on the 
calculation of the required physical amount from the given ones, while the principles/laws and 
conditions which justify the calculation are attached in the ad hoc way. SOC enables implicit 
assumptions and physical meanings of calculation to be systematically described. 

Additionally, a pair/set of model fragment classes which have similar conditions (situations) 
but have exclusive MAC(s)/PPC(s) as applicable condition(s)/consequence(s) is called 'exclusive 
model fragment classes.' Grouping such model fragment classes helps the comparison of models. 
 
4.2 Procedure 
 
4.2.1 Explanation of the model-making process (solution) 
 
The description of model-making process mentioned above makes it possible to explain why/how 
each principle/law is applied explicitly referring to its modeling assumptions. In figure 1b, for 
example, the formula 'v2 – v0

2 = 2ax' (dynamic change constraint) is used which relates an object's 
displacement, velocity and acceleration in a time interval. Note that the constraint 'acceleration is 
constant in the interval' (operating range constraint) is explicitly described which is an important 
precondition for this model fragment to be applied. Many students wrongly use this formula when an 
object's acceleration temporally varies. The explanation explicitly referring to modeling assumptions 
would be helpful in avoiding such mistakes. 

Additionally, in solving problems, it is important to recognize not only each local 
principle/law and its consequence, but also the global principle/law which dominates the behavior of 
the whole system. The solution of domain experts is often 'dominant-principle/law-driven,' that is, 
they first recognize the dominant principle/law of a problem, then apply local principles/laws to 'fill in 
the slots' of the global principle/law (Chi, Feltovich and Glaser, 1981; Larkin, 1983; VanLehn and van 
de Sande, 2009). In our framework, a model fragment of global physical phenomenon constraint (PPC) 
are defined as the aggregation of the model fragments of local PPC which compose the global one 
(the applicable condition of a global model fragment is the union of its component model fragments). 
Global model fragments make it possible to explain the model-making process (solution) focusing on 
the dominant principle/law. For example, in figure 1a, the model fragment 'balance-of-forces' gives a 
steady state constraint (global PPC) and its applicable condition includes some physical device 
constraints (local constraints) given by other model fragments. Based on such inclusion relation, the 
sequence of explanation can be controlled as follows: first, to indicate the given condition 'a block is 
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at rest' (which means its velocity doesn't temporally vary) suggests 'balance of forces' should be used, 
then to refer to the laws 'gravity' and 'static friction' which influence the driving power of the block's 
velocity. The generated explanation is shown in figure 2a. 
 

p1 

b1 

µs : coefficient of static friction between b1 and p1 
µk : coefficient of kinetic friction between b1 and p1 

μs�

θ 

Problem: 
 

(a) What is the minimum value of µs in order for the block  
      to be rest? 
 

(b) Derive the velocity of the block when it arrives at the  
      bottom of the slope.�

 

in-field(b1, f1) 

on-floor(b1, p1) 

m-object(b1) 

m-floor(p1) 

g-acc(f1) = g 

s-friction(b1)  
= µsm1gcosθ 

g-field(f1) 

MF:  
gravity force 

mass(b1) = m1 
g-force(b1) = m1g 

MF:  
normal force n-force(b1) = m1gcosθ 

s-cof(b1, p1) = µs 

g-force-n(b1)  
= m1gcosθ 

g-force-t(b1)  
= m1gsinθ 

net-force(b1) = 0 

velocity(b1) = 0 m1gsinθ = µsm1gcosθ 

k-cof(b1, p1) = µk 

rest(b1) 

acceleration(b1) 
= 0 

(a) Q: What is the minimum value of µs in order for the block to be rest?�
MF: balance  
of forces 

MF:  
static friction 

 
(b) Q: Derive the velocity of the block when it arrives at the bottom of the slope.�

on-floor(b1, p1) 

m-object(b1) 

m-floor(p1) 

g-acc(f1) = g 

k-friction(b1)  
= µkm1gcosθ 

g-field(f1) 

MF:  
gravity force 

mass(b1) = m1 
g-force(b1) = m1g 

MF:  
normal force n-force(b1) = m1gcosθ 

g-force-n(b1)  
= m1gcosθ 

g-force-t(b1)  
= m1gsinθ 

net-force(b1) > 0 

acceleration(b1)  
= g(sinθ – µkcosθ) 

k-cof(b1, p1) = µk 

s-cof(b1, p1) = µs '"

in-field(b1, f1) 

velocity(b1) >0 accelerating(b1) 

acceleration(b1) > 0 

MF:  
kinetic friction 

init-velocity(b1) 
= v0 = 0 

acceleration(b1) = const.  

MF:  
v2 – v’2 = 2ax 

velocity(b1) = √2l g(sinθ – µkcosθ) 

MF: Newton’s  
second law 

  
Figure 1. Examples of model-making process. 

 
 
 
4.2.2 Explanation of the difference between models (problems) 
 
The difference between models (problems) can be inferred by comparing their model fragments. 
There are two types of relations between problems: (1) the problems which have the same/similar 
surface structures (situations) but have different physical structures (instantiated model fragments 
belong to different classes) and (2) those which have different surface structures (situations) but have 
the same/similar physical structures (instantiated model fragments belong to the same classes). Both 

(a) Since an object keeps at rest, the principle 'balance of 
forces' is used. So, all the forces applied to the object are 
required (in the parallel direction to the include plane). Gravity 
mg is applied downwards and its component parallel to the 
plane is mgsinθ. Since the plane's surface is rough, static 
friction µsmgcosθ is applied. These forces balances with each 
other, that is, mgsinθ = µsmgcosθ. From this equation, µs must 
be greater than or equal to tanθ. (partly omitted) 

(b) Since an object moves at uniform acceleration, the principle 
'Newton's second law' is used. So, all the forces applied to the 
object are required (in the parallel direction to the include 
plane). Gravity mg is applied downwards and its component 
parallel to the plane is mgsinθ. Since the plane's surface is 
rough, kinetic friction µkmgcosθ is applied. These forces 
influences the acceleration of the object, that is, ma = mgsinθ - 
µkmgcosθ. From this equation, a = g(sinθ - µkcosθ). Since the 
acceleration is constant, the formula 'v2 - v'2 = 2ax' is 
applicable. Consequently, the velocity of the object at the 
bottom of the slope is √2lg(sinθ - µkcosθ). (partly omitted) 

Figure 2. Examples of generated explanation. 
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relations play an important role for promoting conceptual understanding (Scheiter and Gerjets, 2002; 
Scheiter and Gerjets, 2003). As for the latter, the difference is easily inferred by identifying the 
corresponding pair of model fragments (each of which belongs to each model) both of which give the 
(global) PPCs of the same class. The difference can be explained by showing their preconditions 
(situations) are different. 

As for the former, the difference is inferred by identifying the corresponding pair of model 
fragments (each of which belongs to each model) which belong to exclusive model fragment classes. 
Since their situations are similar but their modeling assumption constraint(s) and physical 
phenomenon constraint(s) are exclusively different, they indicate the difference of two models 
before/after the change of the situation. The type of the difference can be explained by referring to 
their modeling assumption classes. For example, when two corresponding model fragments have the 
same physical structure constraints and exclusively different operating range constraints, it is inferred 
that the difference of two models is change of the operating range about the partial system they match. 
The model fragments 'static-friction' in figure 1a and 'kinetic-friction' in 1b are in such relation. It can 
be inferred that the local constraint between a block and slope is changed from 'static-friction' to 
'kinetic-friction' by changing the operating range, by which the global constraint 'balance of forces' 
(steady state constraint) is changed to 'Newton's second law' (dynamic change constraint) (the 
generated explanation is shown in figure 2b).  

Additionally, when comparing models (problems), it is important to recognize not only the 
change of each local principle/law and its consequence, but also the change of the global principle/law 
which dominates the behavior of the whole system. Global model fragments which aggregate the 
model fragments of local PPCs, make it possible to explain the behavioral change of the whole system 
focusing on the dominant principle/law. 
 
 
5. Preliminary Experiment 
 
5.1 Design 
 
We conducted an experiment to evaluate the usefulness of our framework. A SOC-based explanation 
generator was implemented. The purpose was to examine whether the SOC-based explanation 
promotes students' conceptual understanding, that is, whether their representation of problems was 
improved and they became able to solve various types of problems by using correct models. 
Subjects: Fifteen graduates and under graduates whose majors are engineering participated in. 
Instruments: (1) Two sets of problems in elementary mechanics: They were called 'problem set 1 
(PS-1)' and 'problem set 2 (PS-2).' Each set included fifteen problems of various surface/physical 
structures. Problems might have similar situations but different solutions, or have different situations 
but similar solutions. The sets had no common problem. (2) Usual explanation about the solutions of 
eleven problems in PS-1: The calculation of the required physical amount from the given ones was 
mainly explained. (3) SOC-based explanation about the solutions of the same problems as usual 
explanation: In addition to the solution of each problem, the differences between problems were 
explained about eight pairs of problems which had similar surface/physical structures. (4) Explanation 
generator used for generating SOC-based explanation: Model-making processes described by the 
experimenter (first author) were input and their explanations were output, which were rewritten into 
readable natural language by the experimenter (without changing the point). 
Procedure: First, subjects were given PS-1 and asked to group the problems into some categories 
based on some kind of 'similarity' they suppose (any number/size of categories were allowed), then 
asked to label each category they made (called 'categorization task 1'). After that, they were asked to 
solve eight problems in PS-1 (called 'pre-test'). After a week, the subjects were divided into two 
groups: one was the 'control group' (seven subjects) and another was the 'experimental group' (eight 
subjects). The average scores of both groups in pre-test were made equivalent. The subjects in control 
group were given the usual explanation and asked to learn it. The subjects in experimental group were 
given the SOC-based explanation and asked to learn it. After that, by using PS-2, 'categorization task 
2' was conducted in the same way as above. Finally, subjects were asked to solve eight problems in 
PS-2 (called 'post-test'). 
Measure: The quality of the representation of problems was measured with the categories, their 
'frequencies' (number of problems accounted for) and the time required in each categorization task. 
The ability to solve various types of problems was measured with the scores in each test. The effect of 
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learning with usual/SOC-based explanation on the quality of representation and the ability of 
problem-solving was measured with the comparison of the results of two categorization tasks and 
pre-/post-tests. The superiority of SOC-based explanation to usual explanation was measured with the 
differences of improvement of categorization and problem-solving between experimental and control 
groups. 
 
 
5.2 Results 
 
The categories made by subjects and their frequencies in categorization task 1 are shown in table 1. 
Most of the subjects categorized the problems based on the similarity of their superficial features, 
such as the components of the system (e.g., inclined plane, springs), the figures of motion (e.g., 
circular motion, free fall). Additionally, all subjects finished the task within ten minutes. The results 
of categorization task 2 are shown in table 2 (for control group) and table 3 (for experimental group). 
Many subjects of control group still categorized the problems based on the similarity of their 
superficial features, while many subjects of experimental group became to categorize the problems 
based on the similarity of their structural features, that is, the dominant principles/laws of problems 
(e.g., Newton's second law, balance of forces, conservation of energy). Additionally, all subjects of 
control group finished the task within ten minutes again, while the subjects of experimental group 
required from twenty-five to thirty-five minutes. These results suggest that the learning with 
SOC-based explanation promoted representing problems based on their structural features rather than 
their superficial features (the increase of the time required suggests the subjects of experimental group 
inferred the physical structure from surface structure). 

The average scores in pre- and post-tests are shown in figure 3 (in both tests, full marks were 
52). In pre-test, there was no significant difference of average scores between groups (control group: 
36.0 and experimental group: 33.6, t-test p >.10). In post-test, though there was also no significant 
difference of average scores between groups (control group: 42.7 and experimental group: 47.6, t-test: 
p >.10), the increase of average score of experimental group was larger than that of control group. 
This result suggests that the learning with SOC-based explanation promoted the ability to solve 
various types of problems, that is, to make appropriate models regardless of their superficial features. 

These results suggest that SOC-based explanation about the solution of problems and their 
differences can assist students in reaching conceptual understanding. 
 

Table 1: Categories in task-1 
Number of 
subjects 
using 
category 
labels 
(N1=15)�

Average 
size of 
category 
(N2=15)�

Number of 
problems 
accounted 
for 
(N=N1×N2

=225)�

Number of 
problems 
wrongly 
accounted 
for 
(N*=225)�

Number of 
problems 
correctly 
accounted 
for (NC=N-
N*) 

Springs 12� 3.1� 37� 2� 35�

Free fall etc.� 9� 4.1� 37� 2� 35�

Collision� 12� 2.0� 24� 0� 24�

Circular motion� 12� 1.9� 23� 1� 22�

Acceleration� 3� 5.7� 17� 1� 16�

Strings� 7� 2.0� 14� 0� 14�

Inclined planes� 5� 2.2� 11� 0� 11�

Balance� 5� 2.4� 12� 4� 8�

Object only� 1� 5.0� 5� 0� 5�

Friction� 3� 1.7� 5� 0� 5�

Second law� 2� 2.5� 5� 2� 3�

Pulleys� 1� 2.0� 2� 0� 2�

Balance of energies� 1� 4.0� 4� 2� 2�

Motion of weight� 1� 2.0� 2� 0� 2�  
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Table 2: Categories in task-2 (usual) 
Number 
of 
subjects 
using 
category 
labels 
(N1=7)�

Average 
size of 
category 
(N2=15)�

Number 
of 
problems 
accounted 
for 
(N=N1×N2

=105)�

Number 
of 
problems 
wrongly 
accounted 
for 
(N*=105)�

Number 
of 
problems 
correctly 
accounted 
for (NC=N-
N*) 

Springs 4� 4.5� 18� 0� 18�

Inclined planes� 4� 3.3� 13� 0� 13�

Balance of forces� 3� 3.7� 11� 0� 11�

Conservation of energy� 3� 6.0� 18� 9� 9�

Second law� 3� 3.7� 11� 2� 9�

Pulley and string� 2� 3.5� 7� 0� 7�

Circular motion� 4� 1.5� 6� 0� 6�

Pendulum� 3� 1.7� 5� 0� 5�

Simple harmonic 
motion�

2� 2.0� 4� 1� 3�

Collision� 2� 1.0� 2� 0� 2�
 

 
Table 3: Categories in task-2 (SOC) 

Number 
of subjects 
using 
category 
labels 
(N1=8)�

Average 
size of 
category 
(N2=15)�

Number 
of 
problems 
accounted 
for 
(N=N1×N2

=120) �

Number 
of 
problems 
wrongly 
accounted 
for 
(N*=120) �

Number 
of 
problems 
correctly 
accounted 
for (NC=N-
N*) 

Balance of forces� 7� 4.4� 31� 5� 26�

Second law� 7� 3.6� 25� 1� 24�

Conservation of 
energy�

8� 4.1� 33� 12� 21�

Linear accelerated 
motion�

3� 3.3� 10� 2� 8�

Conservation of 
momentum�

3� 1.3� 4� 1� 3�

Acceleration� 1� 3� 3� 0� 3�

Springs 1� 3� 3� 0� 3�

Pulleys� 1� 3� 3� 0� 3�

Simple harmonic 
motion and period�

2� 1� 2� 0� 2�

String and tension 1� 2� 2� 0� 2�

Time 1� 2� 2� 0� 2�
 

 

367



0 

10 

20 

30 

40 

50 

Test-1 Test-2 

Usual expl. 

SOC-based expl. 

 
Figure 3. Average scores of tests. 

 
 
6. Conclusion 
 
Aiming at promoting conceptual understanding through problem practice, we proposed the SOC 
framework based on which the knowledge necessary for designing a set of problems, sequencing them 
and generating explanations can be described. We showed the explanations generated with our 
framework could promote conceptual understanding through a preliminary experiment. SOC-based 
explanation generator can provide a basic function for designing various instructional methods (e.g., a 
detailed explanation is gradually simplified (scaffolding-fading), a sequence of problems is given 
which promotes spontaneous induction). Design of such instructional methods and verification of 
their effectiveness are our future work. 
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