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Abstract: Computational Thinking (CT) is becoming a core element of current K-12 science 

curricula. In spite of the known synergies between CT and science education, few attempts have 

been made to leverage this synergy, especially at the middle school level. In previous work with 

the Computational Thinking for Simulation and Modeling (CTSiM) environment (Basu, et al., 

2013; 2014; Sengupta, et al., 2013) we have demonstrated strong synergies between learning 

science content and CT, with students showing strong learning gains in kinematics, ecology, 

and CT concepts. However, when working in CTSiM, students also faced a number of difficul-

ties in understanding science concepts and CT constructs, and had to be scaffolded 1-1 by the 

classroom teacher or the researchers conducting the study (Basu, et al., in review). To better 

scaffold their learning, we developed a set of hypertext resources and formative assessment 

quizzes in the system. This paper reports a teacher-led, multi-domain classroom study con-

ducted with 5th grade students using CTSiM. Our results, based on pre- to post-test gains, and 

the accuracy of the students’ CTSiM models, demonstrate significant and synergistic learning 

of science concepts and CT skills in Kinematics and Ecology domains, along with transfer of 

CT skills across domains.  
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1. Introduction 

 
Computational Thinking (CT) (Grover & Pea 2013; Wing 2011) has been steadily gaining importance 

as a vital ingredient for STEM education (NRC, 2011). It is becoming a key component of various 

national science education frameworks (Guzdial, 1995), which place a lot of emphasis on exploiting the 

synergies between CT and STEM for classroom instruction. However, few systems or curricula that 

integrate CT skills with curricular science learning have actually been developed for use in K-12 class-

rooms (Grover & Pea, 2013). Towards this end, we have been developing CTSiM (Computational 

Thinking using Simulation and Modeling) (Basu, et al., 2013; Sengupta, et al., 2013) – a CT based 

science learning environment for middle school students that helps students learn science by construct-

ing computational (i.e., simulation) models of science phenomena.  

Our initial studies with CTSiM, used by a science teacher in a 6th grade science classrooms have 

shown promising results in synergistic learning of science and CT concepts (Basu, et al., 2013; 2014). 

However, students face a number of difficulties in understanding and applying science domain 

knowledge and CT constructs to building and debugging their computational models.  In studies we 

have run to date, the classroom teacher or members of our research team have provided additional sup-

port to help students overcome their difficulties. To help students tackle these difficulties on their own, 

we have added resources and formative assessments to the CTSiM environment that help students learn 

and test their understanding of relevant science and CT concepts.  These additions to the system repre-

sent an initial step in our goal for providing individualized scaffolding to help students develop more 

self-regulation skills and apply them to developing correct models of the science phenomena. Though 

researchers have emphasized the need for scaffolding in CT-based environments, such functionalities 

are virtually non-existent in the existing CT-based systems (Basu, et al., 2013). 

This paper discusses results from a recent classroom study with about 26 5th grade students. 

Students were assessed on their science and CT knowledge before and after they completed all of the 
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units for each topic. Students’ final models and the evolution of the models within and across units were 

also evaluated by comparing the models against corresponding correct or ‘expert’ models for each unit. 

In the analysis presented in this paper, we investigate the relations between students’ pre-post learning 

gains, information acquisition behaviors, and their ability to build correct models. Our results show 

strong correlations between the ability to build models and pre-post test gains 

 

2. The CTSiM  Environment and Learning Units 

 
Principles that govern the design and implementation of the CTSiM system have been discussed in 

Basu, et al. (2013) and Sengupta, et al. (2013). The overall focus has been very much on learning by 

modeling using an agent-based framework. In addition, by developing a visual block-structured do-

main-specific computational modeling language, students are able to construct, test, and evaluate their 

evolving models, learning and interpreting new knowledge as they work in this environment. 

In CTSiM, students first construct a conceptual model by describing the model structure in 

terms of agents, their properties, behaviors, and interactions with other agents and the environment. The 

conceptual model provides the basis for constructing the computational model in the ‘Construction 

world’ (see Figure 1(a)). To construct their computational models, students select from a library of 

visual primitives provided on the left pane and spatially arrange them on the right pane. The available 

primitives include domain-specific (e.g., ‘energy’) and domain-general (e.g., conditionals and loops) 

constructs. Students can observe the behavior of their models by executing them as agent-based simu-

lation (Wilensky & Reisman, 2006), and trace the execution of their models. Students can also verify 

Figure 1(a): The Construction world; (b) The Envisionment world in a fish-tank unit 
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the correctness of their models by a side-by-side comparison of their models’ simulations with an ‘ex-

pert’ simulation in the ‘Envisionment world’ (see Figure 1(b)). Identifying differences between the 

simulations helps students identify and correct errors in their models.  

This new version of CTSiM also includes two searchable sets of hypertext resources, one for 

domain information and one for information about use of CT constructs and agent-based modeling. This 

version also offers students opportunities for checking their science and CT understanding through 

formative quizzes administered by a mentor agent – Ms. Mendoza. Ms. Mendoza chooses a set of mul-

tiple-choice questions based on knowledge needed for the unit the student is working on, and grades 

students’ responses. If a student makes a mistake, she points out the relevant page from the science or 

CT resources which the student needs to read. Students can choose to take none or multiple formative 

quizzes in each unit. They can also review their last quiz taken and agent feedback received, or retake 

the questions they got wrong on their last quiz to improve their scores.  

The CTSiM learning curriculum employed in the study comprises four modeling units: (1) 

Modeling shapes like squares and triangles with equal-length segments, illustrating constant speed, then 

extending them to increasing and decreasing spirals to model acceleration and deceleration; (2) Model-

ing roller-coaster behavior as it traverses different segments of a track. An expert simulation is provided 

to help students build models to match the expected behavior during each segment; (3) Modeling part 

of a closed fish tank system - a macro-level semi-stable model involving the food chain, respiration, 

and reproduction processes of fish and duckweed. The non-sustainability of the model (the fish and the 

duckweed gradually die off) encourages students to reflect on the probable cause and prompts the tran-

sition to the next unit involving (4) Modeling bacteria in the waste cycle, which, through stages, help 

convert the toxic fish waste to nutrients for the duckweed. 

 

3. Method 

 
We conducted a new classroom study using CTSiM with students in a 5th grade class of a middle Ten-

nessee public school (average age of students was 10.5) with 26 students. The study was supervised by 

the science teacher and one of our researchers. Before the study, students were introduced to the CTSiM 

system and the modeling units, the CT resources describing how to model given scenarios using an 

agent-based modeling paradigm and CT constructs. As students worked individually on their modeling 

tasks, they were periodically reminded to refer to the science and CT resources. In addition, the teacher 

and the researcher, provided some front-of-the-class and individual help, when students were unsure 

about how to debug their models. 

Students worked in 45-minute daily sessions for 15 days over a span of 3 weeks. On Day 1, 

students took pre-tests for CT and Kinematics and Ecology science content. They worked on Modeling 

Units 1 and 2 on days 2-7, before taking the Kinematics post-test and a first CT post-test on day 8. 

Students then worked on the Ecology units 3 and 4 on days 9-14. They took the Ecology post-test and 

a second CT post-test on day 15. Each modeling unit included online multiple-choice question pre- and 

post-quizzes before and after the unit that tested important science and CT facts and concepts linked to 

that unit. All student actions on the CTSiM system were logged for post-hoc analysis. 

 

3.1 Pre-post assessments for measuring science and CT learning 
Pre-post assessments for Kinematics, Ecology and CT tested students’ understanding of science con-

cepts and CT skills as well as the ability to solve problems by combining multiple fundamental concepts. 

The Kinematics pre/post-test assessed whether students understood the concepts of speed, acceleration 

and distance and their relations. The test required interpreting speed-time graphs and generating dia-

grammatic representations to explain motion in a constant acceleration field (Basu, et al., 2013; 2014). 

An example question asked students to diagrammatically represent the time trajectories of a ball 

dropped from the same height on the earth and the moon, and generate corresponding speed-time graphs. 

For the Ecology test, questions focused on students’ understanding of the role of the species in a fish-

tank ecosystem, their interdependence, and how a change in one species affected the others. An example 

question asked was “Your fish tank is currently healthy and in a stable state. Now, you decide to remove 

all traces of nitrobacter bacteria from your fish tank. Would this affect a) Duckweed, b) Goldfish, c) 

Nitrosomonas bacteria? Explain your answer.”  
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The CT test required students to generate algorithms for scenarios described in text form using 

primitives specified in the questions. Simple questions tested use of a single CT construct, while mod-

eling complex scenarios involved use of CT constructs like conditionals and loops and domain-specific 

constructs. This tested students’ abilities to develop meaningful algorithms using programmatic ele-

ments like conditionals, loops and variables.  

Questions on the online pre-post quizzes tested single science or CT concepts. For example, a 

quiz question for the fish-micro unit asked: “Which of the following things does Nitrobacter consume 

to increase its energy? Students answered the question picking one of 4-5 choices. These questions 

were treated as formative assessments, and student responses were graded and feedback was offered 

when students selected an incorrect answer. 

 

3.2 Assessing students’ computational models 
We evaluated students' computational models in each unit by comparing against the corresponding ex-

pert model. For this comparison, we developed a vector-distance metric (Basu, et al., 2014) to measure 

the dissimilarity between a student’s model and the expert model. This metric is based on a Bag of 

Words (BoW) (Piech, et al., 2012) representation of the models, in which each procedure (i.e., agent 

behavior) is analyzed as the set of primitives used to model the procedure. Each primitive was further 

labeled as primarily computational (e.g., the ‘repeat’ primitive) or primarily domain-related (e.g. the 

‘speed’ primitive), allowing us to calculate a separate distance measure for computational and domain 

aspects of the models. The correctness of a procedure was then computed as the size of the intersection 

of the student and expert models. The sum of procedure correctness scores, normalized by the size of 

the expert model, provides an overall model correctness measure, bounded between 0 and 1 inclusive.  

To account for extraneous primitives, we also calculated an incorrectness measure for each 

procedure by counting the number of extra primitives in the procedure. Again these procedure incor-

rectness measures were aggregated and normalized by the size of the expert model to provide the overall 

model incorrectness score.  To determine the overall vector-distance metric, we used a two-dimensional 

(correctness, incorrectness) vector and calculated its distance to the vector (1,0) that implies a complete 

BoW match to the expert model. A distance of 0 indicates a perfect BoW match (i.e., the student’s 

model contained all the primitives in the expert model and no extraneous primitives). Using the vector-

distance metric, we computed the students’ model progression as the intervention progressed. For each 

change students made to their model, we calculated the distance-to-expert of the resulting intermediate 

model. An aggregate edit effectiveness measure, i.e., the proportion of model edits made that were 

effective was computed for each student by unit. 

 

4. Results 
 

We report learning gains, modeling performance metrics and time spent on the science and CT resources 

to understand the relations between students’ actions in the system and their learning gains. On an av-

erage, in each unit, students took about 0.8 new quizzes, and retook as quiz 0.43 times. 

 

4.1 Assessing Pre-post Learning Gains 
Table 1 presents the results of the paper-based pre-post tests. These results show that the intervention 

produced significant learning gains in both the science and CT domains. The pre- to post-test gains for 

the Kinematics and Ecology domains were significant, with effect sizes of 0.34 and 2.65, respectively. 

Students also gained significant in the CT post-test after Kinematics, and further gained (however, not 

significantly) after the Ecology unit. These results indicate the synergistic learning of science and CT 

concepts, and that there was some transfer of CT concepts from one science domain to another. 

 

4.2 Modeling performance and behavior in and across activities 
We calculated the vector-distance, effectiveness, and consistency metrics to study the accuracy of stu-

dents’ final models and their model evolution for each activity (see Table 2). When one studies model 

accuracy over time, the average model accuracy keeps improving from the Roller Coaster unit (average 

distance from expert model = 0.39) to the Fish macro unit (average distance = 0.3) , and finally to the 

Fish micro unit (average distance = 0.24). We computed the distance metrics for domain and CT prim-

itives separately and noted the same trend which was not surprising since the use of domain and CT 
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primitives was significantly correlated for all students in each activity. Similarly, the effectiveness and 

consistency metrics generally improve with time, implying that students made a smaller percentage of 

incorrect edits in later activities, and when they did, they rectified them more quickly. 

 

Table 1: Paired t-tests showing learning gains for the Kinematics, Ecology, and CT pre-post tests 

 

Table 2: Modeling performance and behavior across learning activities 

 

Measures Roller Coaster unit Fish-macro unit Fish-micro unit 

Final model distance .39 (.09) .30 (.23) .24 (.37) 

Number of model edits 155.0 (63.9) 232.2 (87.7) 134.3 (62.9) 

Effectiveness of edits .38 (.08) .52 (.07) .58 (.11) 

Consistency of edits .70 (.15) .87 (.19) .86 (.17) 

 

We also studied the relations between students’ final models, their pre- to post-test learning gains, and 

the paths they took to reach their final models. We observed that model accuracy predicts learning gains 

for the corresponding science content and for CT skills in the later modeling activities after students 

have become sufficiently familiar with CT constructs (for example, r(micro-final-distance, Ecology 

gain) = 0.52, p < 0.01). Similarly, in latter modeling activities, the effectiveness and consistency of 

students’ edits became strong predictors of final model accuracies for the activities (p < 0.05). 

 

4.3 Information acquisition behavior 
We also calculated the amount of time students spent on the domain and CT resources in each activity 

(see Table 3). Students spent a considerable amount of time on the CT resources during their first 

CTSiM modeling activity, but the use of CT resources dropped to less than 10% of the initial reading 

time for the remaining units. This does not seem surprising since students initially needed to learn how 

to use the CT constructs and the agent-based framework for building computational domain models, 

but after gaining an initial understanding, these abilities seem to transfer easily to other domain models. 

 

Table 3: Time (in seconds) spent in domain and CT resources for different activities 

 

Resources 

Units 

Constant 

Shape Drawing 

Variable 

Shape Drawing 
Roller Coaster Fish-macro Fish-micro 

Domain 742.9 (262.2) 508.0 (194.8) 427.6 (251.4) 1160.1 (550.7) 1045.9 (509.1) 

CT 1221.6 (1359.5) 92.08 (110.3) 44.3 (86.8) 45.7 (69.8) 34.3 (82.6) 

 

In case of domain resources, the trend differs. For the three Kinematics units (constant speed 

and variable speed shape drawing), the time spent on domain resources dropped, but at a much smaller 

rate than the time spent on CT resources. When students switch to modeling ecological processes (the 

fish macro and the fish micro units), there is a large increase in time spent on the resources (the time 

more than doubles).  On further analysis, the difference in resource access time makes sense. The re-

sources for the shape drawing units describe the relation between acceleration, speed and distance, and 

the meaning of turn angles. The roller coaster computational model is more complex, and combines 

speed up, slow down, and move at a constant speed functions. In each unit, new concepts are included 

Domain 
Pre-test score 

(mean, sd) 

Post-test score 

(mean, sd) 

p-value 

2-tailed 

Effect 

Size 

Kinematics 

(max score = 36.5) 
13.62 (5.84) 18.38 (7.1) < 0.05 0.34 

Ecology 

(max score = 32.5) 
5.65 (2.85) 19.69 (6.94) < 0.0001 2.65 

Computational Thinking  Post Test 1 

(max score = 1 – normalized) 
0.34 (0.19) 0.64 (0.14) < 0.0001 1.80 

Computational Thinking  Post Test 2 

(max score = 1 – normalized) 
0.34 (0.19) 0.69 (0.19) < 0.0001 1.84 
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that build on concepts presented in the previous unit. Therefore, the read time decreases, but not by 

large amounts. When the switch is made from the kinematics to the ecology units, there is a considerable 

increase in the number of new concepts required to build successful models. In addition, the classroom 

teacher provided less instruction on the specifics of the ecological models, and asked students to read 

the resources carefully when constructing their models.  

We also studied whether students’ time spent on reading resources in an activity was related to 

the accuracy of their models built in that activity. We find that students’ reading times correlate well 

with their final model distance scores (e.g., r(micro-distance, domain-reading-time) = 0.41, p < 0.05).  

 

5. Discussion and Conclusion 

 
In this paper, we present a new version of the CTSiM system – a learning environment for fostering 

synergistic learning of middle school science and CT. To help students with their individual learning, 

we have added science and CT resources, and introduced formative assessments to allow students to 

check their understanding of science and CT concepts during model building and refinement. Our in-

class study with 5th grade students with the new version of CTSiM produced significant science and CT 

learning gains with large effect sizes, and showed that computational concepts, once learned, could 

form the basis for modeling in other science domains. The gains were further supported by additional 

metrics that showed students developed the abilities to build more accurate models and make more 

consistent model edits. Their use of resources was also consistent with the complexity of the units they 

worked on. Further, model accuracy is predictive of learning gains, edit effectiveness and consistency.  

Our current findings indicate that formative assessments and corresponding adaptive scaffold-

ing can play an important role in supporting student learning in OELEs (Azevedo & Hadwin, 2005; 

Land, 2000). This study did not produce conclusive evidence of the effectiveness of formative assess-

ments and adaptive scaffolding in making students better modelers and science learners, but, in the next 

iteration of CTSiM, our plans are to track students’ model building activities to dynamically scaffold 

students in their concept learning, model building, and model debugging tasks.  

 

Acknowledgements 
 

This work was supported by the NSF (NSF Cyber-learning grants # 1124175 and #1441542). 

 

References 

 
Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition–Implications for the 

design of computer-based scaffolds. Instructional Science, 33(5), 367-379. 

Basu, S., Dukeman, A., Kinnebrew, J., Biswas, G., & Sengupta, P. (2014). Investigating student generated com-

putational models of science. In Proceedings of the 11th International Conference of the Learning Sciences 

(pp. 1097-1101). Boulder, CO, USA. 

Basu, S., Dickes, A., Kinnebrew, J. S., Sengupta, P., & Biswas, G. (2013). CTSiM: A Computational Thinking 

Environment for Learning Science through Simulation and Modeling. In Proceedings of the 5th International 

Conference on Computer Supported Education (pp. 369-378). Aachen, Germany. 

Grover, S., & Pea, R. (2013). Computational Thinking in K–12. A Review of the State of the Field. Educational 

Researcher, 42(1), 38-43. 

Guzdial M. (1995) Software-realized scaffolding to facilitate programming for science learning. Interactive  

Land, S. M. (2000). Cognitive requirements for learning with open-ended learning environments. Educational 

Technology Research and Development, 48(3), 61-78. 

National Research Council. (2011). A framework for K-12 Science Education: Practices, Crosscutting Concepts, 

and Core Ideas. Washington, DC: The National Academies Press. 

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with 

K-12 science education using agent-based computation: A theoretical framework. Education and Infor-

mation Technologies, 18(2), 351-380. 

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through con-

structing and testing computational theories - An embodied modelling approach. Cognition & Instruction, 

24(2), 171-209. 

Wing, J. (2011). Research notebook: Computational thinking—What and why? The Link Magazine, Spring Car-

negie Mellon University, Pittsburgh, USA. Retrieved from http://link.cs.cmu.edu/article.php?a=600  

 

189

http://link.cs.cmu.edu/article.php?a=600

