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Abstract. The JuxtaLearn project (funded by the EU) aims at facilitating the acquisition of 

science concepts through the creation and sharing of videos on the part of the learners. For the 

specific learning targets threshold concepts are specified as key elements of knowledge. 

Content analysis techniques are used to extract learners’ concepts manifested in textual 

artifacts taken from online resources like Khan Academy and YouTube comments. Deviations 

between student concepts and an agreed upon domain knowledge represented in an ontology 

can indicate problems of understanding. In this paper we particularly report on the judgement 

of teachers reading the validity of the problems of understanding identified by our method.  
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1. Introduction 
 

The on-going European project JuxtaLearn explores the potential of fostering learning in different 

fields of science (or STEM) by stimulating curiosity and understanding through creative performance 

on the part of the students in terms of creative video making/editing and sharing/commenting 

activities. In order to intelligently analyze and support the sharing and commenting of videos, we have 

adapted and used specific techniques for the analysis of learner created textual artifacts to characterize 

the learners’ understanding of science concepts in terms of semantic networks (Daems et al., 2014). In 

an initial phase of the project, the textual artifacts were video comments from existing web-based 

learning platforms. Although the problems of understanding that we could identify in this way were 

plausible, the question remains if the method identifies concepts relevant under human (teachers’) 

judgement. In the study reported in this paper we have asked teachers to judge the identified items 

(i.e. problems of understanding).  

 

Figure 1. Juxtalearn Process 

 

The JuxtaLearn approach can be seen as a kind of “second order inquiry leaning” in that the 

creative process follows an initial phase in which the learners appropriate the basic concepts of the 

domain. No specific assumptions about this prior knowledge building process are made. The ensuing 

JuxtaLearn-specific process (cf. Figure 1) comprises eight steps: (1) Identification of tricky topics, (2) 

demonstration of subject matter, (3) interpretation of the subject matter by the students, (4) video 

enactment, (5) composition of a video, (6) sharing the video with others, (7) discussion of the video 

and (8) review of the results. As shown in Figure 1 the tricky topics and their particular stumbling 

blocks feed through the whole process. From an educational design perspective, the JuxtaLearn 
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approach is based on the notion of “threshold concepts” (Meyer & Land, 2003) to characterize 

knowledge elements that enable important shifts of understanding. In the JuxtaLearn approach these 

are represented as so-called “tricky topics” with subordinate “stumbling blocks”. Initially, the 

selection of tricky topics and stumbling blocks depends on the teachers’ choices and are not pre-

scribed through a normative reference list. To support the teachers defining tricky topics and 

stumbling blocks we automatically extract and suggest potential problems of understanding organized 

in an evolving problem ontology. 

In JuxtaLearn, we have used external sources, such as Khan Academy1 or YouTube2, to develop 

and test our analytic methods as they provide a vast amount of videos on different STEM topics and 

offer the option to enter into a learning dialogue with other users (students). 

 

 

2. Related Work 
 

Learning may be seen as a process of knowledge revision and conceptual change (cf. e.g., Chi, 2008). 

The acquisition of new concepts may either be an extensions of the learner’s pre-knowledge (called 

enrichment by Chi, 2008) or knowledge revisions that arise from cognitive conflicts between pre-

knowledge and new phenomena or dependencies to be explained (Vosniadou, 2007).  

To make the progression of understanding susceptible to inspection and reflection it is desirable 

to make the students’ conceptual models visible for them and for their teachers. Technically this can 

be supported by analyzing student-generated texts (comments or notes) and transforming them into 

network representations. A method that provides this basic function is “Network Text Analysis” 

(NTA, cf. Carley, Columbus, & Landwehr, 2013). In this approach, a concept stands for a single idea, 

which is represented by one or more words in a network (nodes). The links representing semantic 

relationships between these words (edges) may differ in strength, directionality, and type based on the 

words’ position to each other in the text. Similar to text networks, concept maps are networks in 

which knowledge is represented by concepts and their relationships to each other (Novak & Cañas, 

2008). In the context of knowledge construction research, concept maps are often used to trace the 

student’s knowledge development (Engelmann, Dehler, Bodemer, & Buder, 2009).  

We have adopted this network-analytic perspective for the analysis of textual learning objects, 

following up on a suggestion by Jacobsen and Kapur (2010) to conceive learners’ mental models or 

“ontologies” as scale-free networks. This approach has been further elaborated by Hoppe, Engler and 

Weinbrenner (2012) proposing a network-based model of knowledge evolution and conceptual 

change.  

 

 

3. Approach 
 

Our analysis of learner generated textual artefacts mainly relies on the categorical distinction between 

domain concepts, pedagogical and general concepts. Basic taxonomic relations should be provided for 

domain concepts, but simple dictionaries or lists of words are sufficient for the other two categories. 

Following Guarino et al’s (2009) classification of ontologies we use an informal taxonomy that is 

rooted in the hierarchy of categories from Wikipedia (w.r.t. knowledge of the domain) and the 

contributions of teachers (w.r.t. knowledge about threshold concepts and stumbling blocks). In Daems 

et al. (2014), we show that the semantic networks generated from example sources are human-

interpretable and allow for extracting potential problems of understanding. 

As a source for external data we use (again) Khan Academy’s video library (more than 4.300 on 

numerous science topics on different educational levels; Khan Academy, 2013). For our case study 

we used eight videos covering topics from chemistry, biology, and physics. In total, we have extracted 

4476 comments from Khan Academy and YouTube for these videos using each site’s particular web 

service. Table 1 provides an overview of the topics and amount of comments. The video length ranges 

from 09:50 minutes (Thermodynamics) to 19:15 minutes (Entropy) with an average of about 15 

minutes.  

                                                      
1 https://www.khanacademy.org 
2 https://www.youtube.com 
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As explained by Daems et al (2014) we found that certain general (not domain-specific) 

keywords are often used to phrase questions around the videos. These words (e.g. related to an 

explanation request) may indicate specific problems of understanding that may occur in combination 

with one or more domain concepts. These “signal concepts” indicate a specific problem related to one 

domain concept or related to two domain concepts. Therefore, we introduce two types of signal 

concepts: unary and binary. In this study we focus on binary signal concepts referencing two domain 

concepts in combination or inter-relation. A typical example for the binary type is 

“difference_between”, which may indicate that the author has a cognitive conflict (Vosniadou, 2007) 

concerning the difference between the two domain concepts.  

 

Table 1: Topics and added number of extracted comments on STEM videos at Khan Academy’s 

website and the corresponding YouTube videos. 

Subject Topic # comments 

Chemistry 

Covalent and Metallic Bonds 855 

Elements and Atoms 1934 

Le Chatelier’s Principle 196 

Biology 
Chromosomes 487 

Mitosis 748 

Physics 

Entropy 39 

First Law of Thermodynamics 94 

Thermodynamics 123 

 

To extract the network from the text we use a text window running over the text source (i.e. a 

pre-processed comment) to detect the co-occurrences in this context. For the results presented below 

we used a window size (7) guaranteeing that the signal concept and the domain concept(s) share a 

context with at most five words in-between. 

Figure 2a shows the “cloud” of concept pairs around the concept “difference_between” 

generated from 855 comments of the video “Covalent and Metallic Bonds”. The red node represents 

the signal concept this network focuses on while the blue ones are helper nodes (“combination 

nodes”) that clearly identify the corresponding nodes for each of the combinations (see also Daems et 

al. 2014). The size of the combination nodes represents their frequency of occurrence throughout all 

comments. Green nodes represent the domain concepts themselves. 

As a first step towards a set of potential problems of understanding to be presented to a teacher, 

all concepts that do not meet a survival threshold are dropped from the set of candidates. In our study 

we used a minimum occurrence value of 2 for the concept nodes. All combination nodes connected to 

deleted nodes were removed as well. This leads to a network like it is shown in Figure 2a. To deal 

with very dense networks, the minimal occurrence frequency may be adapted. 

For further visual exploration the number of links may be decreased further by dropping the 

links from the combination nodes (blue) to the concept nodes (green) as well. The concept pairs are 

just labels for the combination nodes then as shown in 2b. Like in figure 2b the combination nodes as 

well as the links are sized in proportion to the pair’s occurrence frequency in the network. From this 

representation a ranked list of concepts is derived to be presented to teachers. This list can then be 

added to the domain taxonomy and proposed as stumbling blocks during the “Identify” stage of the 

JuxtaLearn learning process. For the sake of our analysis, a complete set of networks was created 

addressing all signal concepts as well as all topics presented in Table 1.  

While Daems et al. (2014) have already shown that our algorithmic approach generates 

plausible results, our next step is to show the validity of this approach by comparing the results of our 

algorithm in terms of the relevance of the proposed problems of understanding as perceived by 

experienced teachers. 

To judge the quality of our automatic analysis we defined a set of constructs that allows 

deciding if a teacher might accept our suggestions. Therefore, we decided to use (1) “Plausibility” (is 

it reasonable to assume that there might be a problem?), (2) “Frequency” (how often is this problem to 

be expected to occur?), and (3) “Relevance” (Is it important to solve this issue of understanding / to be 

able to make this distinction?). Especially the later one is a very important trait characterizing 

threshold concept according to Meyer & Land (2003). 
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Figure 2a/b. Network on the topic of “Covalent and Metallic Bonds” with the signal concept 

“difference_between” (red), combination nodes (blue) and domain concepts (green). 

 

 

4. Evaluation 
 

To evaluate the results of our approach we confronted high school teachers with the results from the 

automatic extraction. Their expertise and knowledge and moreover their long-term experience with 

the learning capabilities of their students is used to judge the reliability of the analysis results.  

 

4.1 Hypotheses 
 

As aforementioned our analysis is supposed to reveal the students' lack of understanding. The analysis 

results are compared to the experienced teachers’ estimation along the following hypothesis: 

Combination nodes with a high support value represent concepts (or concept pairs) that 

challenge the student’s understanding in the opinion of teachers. Support values are derived from the 

occurrence value of the corresponding nodes. 

 

4.2 Experiment design 
 

We have asked six German secondary school teachers (2 females), two for each of the STEM subjects 

(see Table 1), to participate in our study. The teachers have at least four years of work experience in 

all age groups. We used a questionnaire containing concept pairs from the binary signal concept 

networks “difference_between” and “relation”. The selected signal concepts are supposed to uncover 

misunderstandings in differentiating and comprehending the context among each of the two concepts. 

We presented only those concept pairs to the teachers that met a threshold of at least two occurrences 

in the set of all video comments of a particular video.  

The questionnaire comprised three questions each addressing one of the measures defined 

above: (1) the plausibility of the relation between the two a concept according to the teachers’ 

expertise, (2) the occurrence frequency in class and (3) their relevance for the subject matter. Each 

question can be answered on a 5-point Likert-scale ranging from 0 (not at all) to 4 (very plausible/ 

frequent/ relevant). To avoid arbitrary answers the teachers may state that a presented concept is not 

part of their current or past curricula. Concepts excluded by a teacher were not further considered. 

The teachers were asked to answer the questionnaire containing between five and twelve 

concept pairs depending on the extent of the corresponding network. The questionnaire included both 

concept pairs with a high and a low occurrence frequency to cover common as well as less common 

problems of understanding. All items were translated from the English to German. Concept pairs 

containing terms which are hardly to translate were dropped as they might influence the results. After 

finishing the questionnaire the teachers were given the chance for open comments. 
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4.3 Results 
 

Table 2 presents excerpts from the results from the questionnaire. These examples show the teachers' 

rating for all concept pairs in the subject chemistry linked by the signal concepts 

“difference_between” and “relation”. The corresponding videos used for the analysis dealt with the 

topics of “Covalent and Metallic Bonds” and “Elements and Atoms” and had 2789 comments in total 

on YouTube and Khan Academy. 

 

Table 2: Evaluation of the chemistry topic “Covalent and Metallic Bonds” 

Concept pair Construct Teacher A Teacher B 
Automated Analysis 

(occurences) 

Electronegativity – 

Ionic Bonding 

Plausibility 4 4 

4 (16) Frequency 3 4 

Relevance 2 4 

Elektronegativity – 

Polarization 

Plausibility 4 2 

3 (11) Frequency 4 3 

Relevance 3 4 

Electric Charge – 

Electron 

Plausibility 3 4 

3 (10) Frequency 3 4 

Relevance 4 4 

Electron – Ionic 

Bonding 

Plausibility 3 4 

3 (9) Frequency 2 4 

Relevance 4 4 

Ionic Bonding – 

Polarization 

Plausibility 2 3 

1 (3) Frequency 2 2 

Relevance 3 3 

Covalent Bonding – 

Ionic Bonding 

Plausibility 2 2 

2 (7) Frequency 3 4 

Relevance 4 4 

Molecule – Dipole 

Plausibility 3 3 

2 (7) Frequency 3 3 

Relevance 3 4 

  
On average all concept pairs were rated as very plausible, frequent and relevant (MPlausibility = 3; 

MFreqeuncy = 3; MRelevance = 4). All but three concept pairs (out of 26 in total) across the three subjects 

were rated (very) relevant for the subject matter by at least one of the two teachers. In addition, all but 

two pairs were rated (very) plausible and all but four pairs confirmed to model a (very) frequently 

occurring problem in class by at least one of the teachers. 

To compare the results of the teachers not only on a boolean level (agree/disagree), we 

transformed the occurrence frequency calculated by our algorithm to the same scale as the one used 

by the teachers (see Table 2). As a reference figure we used the 2nd most occurring concept as we 

found that the top most concept is often an outlier compared to the rest. Based on the resulting relative 

frequencies, we used 0,25 steps to determine the rank of an algorithm result (<0,25:=0; 

<0,5:=1;<0,75:=3; >=0,75:=4).  

We used Spearman’s rank correlation coefficient to check for dependencies between these three 

constructs. It turned out that there is a strong correlation between the “plausibility” and “frequency” 

and a moderate correlation between “frequency” and “relevance”. This supports our assumption that 

the teachers (like our algorithm) use frequency as an indicator for relevance and plausibility. 

To assess the level of agreement among the teachers we had a look at the inter rater reliability. 

We applied Kendalls-W test to the questionnaire data. We found that significant results for all but the 

physics ratings, but the Kendalls-W values only range from poor to moderate agreement 

(WBiology = .272; WChemistry = .298; WPhysics = .067). 

 

 

5. Conclusion 
 

Our study has brought forth mixed results: None of the proposed problems of understanding were 

rejected by both experts, but the experts also did not show a strong agreement among themselves. 

Moreover, comments by the teachers revealed that they had problems judging the “difference” 

statement for closely related and overlapping concepts, which is one possible explanation for their low 

agreement. In addition, they stress that the relevance of a distinction strongly depends on the 
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educational level. In the lower grades the distinction may be less relevant than in higher classes. A 

potential difference in teaching experience may explain their disagreement. 

Overall, relevance is judged more positively than the other criteria, which supports our initial 

claim that the algorithm sieves relevant problems of understanding. The judgements on frequency and 

plausibility differ from relevance and are quite highly correlated to each other. We assume that these 

criteria reflect the constraints that are related to the curricular context (i.e. normative) and to the actual 

experience (i.e. of practical nature). 

Looking at the limits of our approach we have found that we need a considerable amount 

(>100) of comments to detect reasonable concept pairs. Otherwise the support for each concept pair is 

too low to distinguish random combinations from meaningful ones. Thus, although our proposed 

method is a valuable approach for huge active learning communities (e.g. MOOCs) or Open 

Educational Resource repositories, it is not expected to work well with small scale courses like 

normal class room teaching. Nonetheless, it can produce results from the aforementioned resource 

repositories to guide the individual small scale teaching as well. 
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