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Abstract: In this paper, we present a classification based system to discover knowledge and 

trends in higher education students’ projects. Essentially, the educational capstone projects 

provide an opportunity for students to apply what they have learned and prepare themselves for 

industry needs. Therefore mining such projects gives insights of students’ experiences as well 

as industry project requirements and trends. In particular, we mine capstone projects executed 

by Information Systems students to discover patterns and insights related to people, 

organization, domain, industry needs and time. We build a capstone projects mining system 

(CPMS) based on classification models that leverage text mining, natural language processing 

and data mining techniques.  
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1. Introduction 

An undergraduate capstone project is necessary to help the students cement their knowledge and 

prepare themselves for real-life work environment. The projects executed by students are usually 

sponsored by industry professionals who provide requirements, and mentored by faculty who supervise 

student teams to ensure that the projects are completed on time and satisfy the sponsor requirements. 

Students usually store project documentations in a common repository. Several existing works propose 

techniques for assessing students’ projects (Rais, et al. 2010), mining the students’ projects to discover 

the students’ performance (Bharadwaj, et al. 2011), handling the knowledge of the students’ projects 

(Bender,  et al. 2003) and discovering pedagogically relevant knowledge (Merceron et al. 2005). 

However, very little work has been directed towards mining project documentations which are highly 

unstructured and textual in nature. Megha, et al. (2014) studied students’ projects, where the focus is to 

track coding repositories to discover insights of students’ software development practices.  

Mining capstone project documents poses several advantages. Firstly, the project requirements provide 

an opportunity for discovering current project trends in industry. Knowing industry needs can aid 

curriculum designers and course instructors to align the course content to emerging trends and therefore 

equip the students with employability skills. Secondly, when new capstone projects are proposed, the 

search for similar completed projects can aid students and mentors to plan the techniques, approaches 

and methods for project execution.  Thirdly, for new projects, when there is a need for assigning a 

mentor for supervision, identifying mentors who have experience in similar past projects will be helpful 

to ensure success of the project. The main focus of our paper is to mine undergraduate students’ 

capstone project documents to discover insights, and generate summaries and recommendations that 

aids educators in the decision making process. Figure 1 depicts the sample project information in Wiki 

pages.  We have masked the real names. 

Supervisor Team Project Members Sponsor 
Alan Marvel D’PENZ We will create a central workflow 

management system for the regional 

procurement department of ING Bank, to be 

used by 3,000 users regionally. It will be a 

web application hosted on ING Bank’s 

intranet. Functions include tracking projects... 

Bing Huan Goh 

Zoey Tan 

Mei Hui Koh 

Ching Png Lee 

Marcus Kim  

Shawn Matthias- 

Head of 

Procurement, Asia 

& Chee Hwee 

Hong - Service 

Level Manager, ... 

Figure 1. A sample project information from capstone projects Wiki page 
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Supervisor, “Alan Marvel” represents the faculty mentor. Team represents the name of project team and 

is linked to Wiki page of the project. Project represents a brief description of the project requirements. 

Comprehensive complete project details are available in the independent Wiki pages.  Members 

represent students in the team. Sponsor, “Shawn Matthias” and “Chee Hwee Hong” represents the 

project sponsors. Note that the sponsor names are embedded with other details. Now we map the 

example project from Figure 1 to the different aspects of the mining system.  People refers to student 

teams, faculty and project sponsors.  Client refers to the department and name of the company to which 

the sponsors belong. The client for this project is “ING Bank N.V.” Domain refers to industry to which 

the company belongs which is not explicit in the Wiki page. For example, “ING Bank N.V.” belongs to 

the Banking domain. Project needs or requirements represent the requirements given by the sponsors. 

Project needs are primarily textual in nature and requires a painstaking process to manually analyse full 

text to discover patterns and insights. Inspired by Sonia, et al. (2010), we propose to generate brief 

summaries of project needs in terms of keywords or key phrases.  Finally, time refers to year and 

semester which are crawled from detailed project Wikis. 

One of the major challenges in capstone project documentation is that, it is unstructured and 

textual in nature. Therefore, we leverage natural language processing and text analytics techniques for 

processing textual content. In this paper, we describe capstone projects mining system (CPMS), which 

is a classification based solution. The system takes project data as an input and provides output in five 

major dimensions; people, client, domain, project needs and time. We built a visualization tool and a 

recommendation tool as a part of the system. The visualization tool provides interactive graphs that can 

aid the educators to delve into the details for deeper analysis. Recommendation tool aids in 

recommending similar projects and project supervisors for new project. We use Information Systems 

capstone projects (IS480- Information Systems course) to evaluate CPMS. We have collected 322 

projects over 8 years span for our system evaluation.  

 

2. Literature Review 

Applying data mining techniques in education is an emerging research field. It involves development of 

methods for making discoveries within the data from educational settings. The goal is to understand 

students and the learning settings, and to gain insights of educational phenomena (Baker, et al. 2009).  

Data mining: Decision trees are used to evaluate students’ performance (Bharadwaj, et al. 

2011), for mining learners’ behaviour patterns (Bresfelean, et al. 2007), and tracing deficiencies in 

students’ understanding (Yoo et al. 2006). Clustering based models are used for detecting the 

correlation between the students forum participation and final marks of the course (López, et al. 2012),   

to discover training method for novice learners (Chang et al. 2010), for evaluating students in a tutorial 

supervisor (Hammouda, et al. 2005), to promote group-based collaborative learning and student 

diagnosis (Tang et al. 2005). Text mining techniques are used by Gottipati et al (2104) to study 

Information Systems curriculum for discovering insights in terms of competencies. 

Capstone projects: Capstone projects have been studied by various researchers. Many works 

focus on the design and implementation of capstone courses. Descalu, et al. (2005) studied the project 

execution procedures in capstone courses. Various tools that assist students and faculty in capstone 

projects assistance and management were discussed Olarte, et al. (2014). For example, Ceddia, et al. 

(2002) evaluated project management tool for student projects. Mittal et al. (2014) proposed models 

based on data mining to discover students’ behaviour by using capstone project coding repositories. 

Recommendation systems: Recommendation systems are essential in learning environments 

for decision making process by students as well as faculty (Hendrik, et al. 2008). Information 

aggregation using recommendation systems can aid in improving the teaching and learning experiences 

(Geyer-Schulz, et al. 2001). For example, César, et al. (2009) proposed a collaborative recommendation 

system based on data mining techniques that can aid students in planning academic itinerary.  

Therefore, from the forgoing survey of the related research, it is evident that data mining 

techniques have been used in education data mining for several tasks related to leaning and evaluation. 

It is evident that there is need for systems that can mine capstone projects for improving teaching and 

learning. Inspired by the above works, we mine students’ project repositories for discovering insights 

from capstone projects. Processing unstructured text requires additional techniques from text mining 

field for knowledge mining the repository and presenting the results in a meaningful way to the 

educators. 
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3. Capstone Projects Mining System 

 
CPMS system is based on data collected from students’ capstone Wiki pages which will be inputs to our 

solution engine. Figure 2 depicts the high level architecture of CPMS system. In next sections, we 

explain the details of each phase. 

 

Figure 2. Solution architecture of CPMS 

3.1 Pre-processing Phase 

 
The objective of pre-processing is to prepare raw text data for the extraction phase. There are several 

steps: (1) Tokenization involves breaking of a chunk of textual data (e.g., project description) into its 

constituent words. (2) Stop-word removal removes extremely common words that are of little value in 

differentiating documents (Salton, et al. 1983). (3) Stemming reduces inflected and derived words into 

their root word (Porter. 1980).  
 

3.2 Extraction Phase 
 

3.2.1 People and Organization Extraction 
We extract people and organization names by making use of an entity recognition technique. Entity 

recognition focuses on classifying the different parts of text into different entities (Nadeau et al. 2007) 

such as names, locations, titles, etc. Figure 3 shows sample client descriptions from our dataset and 

depict two types of entities; people names (bolded) and organization names (underlined).  

 

 

 

Figure 3. Sample client data with people and organization names 

3.2.2 Domain Extraction 
To discover the domain of an organization, we incorporate an external knowledge source, LinkedIn, by 

virtue of it having one of the most comprehensive records of company data online. In our solution, we 

exploit LinkedIn’s industry API to assign organization names to their industry domains.  For example, 

Citibank and Standard Chartered Bank are classified under “Banking” domain. 

Given an organization name as an input query, LinkedIn API provides a list of matching companies. To 

discover the best match, we use VSM model (Salton, et al. 1983) to calculate the similarity between 

organization data from project Wiki and results from LinkedIn. The project data (organization name and 

project description) as well as the LinkedIn results are conceptually represented by a vector of words. 

To measure the similarity between these vectors we use cosine similarity. Cosine similarity computes 

the angle between both vectors which represents their similarity scores (Salton, et al. 1983). In our 

experiments, we use top ranked result as the matching company and use the industry domain of that 

company as the domain of the input query. 
 

(a) Max XU MengXiang, Founder/Chief Engineer, GraphPaper Pte Ltd 

(b) Avocent Asia Pacific, Alvin Cheang, Product Marketing Manager & Edina Tan, Field Marketing Manager 
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3.2.3 Project Requirements Extraction 
Text mining research provides extraction techniques to extract specific and relevant phrases from 

unstructured text. Keyphrases are an important means of summarization (Katerina et al. 2000).  

 

Table 1. Project requirements summary of a sample project from our dataset. 

Project  Description  Project Requirements (Top 7 keyphrases) 

The project aims to develop an android-based 

mobile application for consumers to enjoy targeted 

discount coupon based on their purchasing … 

Android based mobile application, shopping mall, 

shoppers retail, mobile application, indoor positioning 

system, facebook integration shoppers… 

 

3.3 Application Phase 

 

3.3.1 Summarization 
For summarization, we present the data extracted from extraction phase in a tabular format. Table 2 

shows a sample output from our system for people, organization, domain and project needs for selected 

two projects. The summaries can be further improved using visuals such as word clouds, clusters, etc. 

 

Table 2: Sample structured short summaries by people, organization, domain, and project needs  

People Organization Domain Project Requirements 

Mishra 

Nigamananda,  

Chris Ismael 

Standard 

Chartered Bank 

iLab 

Banking banking services,snapped qr codes,essential 

documents,mobile application,fund transfer bill 

payment,bill splitting,… 

Michael Wong, 

Susan Ngeo, Wing 

Chew Lau, 

Khoo Teck Puat 

Hospital 

Hospital 

and Health 

care 

health lifestyle analysis system,our system,current 

manual data entry process,visualization tools,data 

visualization, data trend.... 

 

3.3.2 Visualization  
For visualization, we translate the extracted data into a set of interactive graphs that can be used by the 

school management and educators. The graphs and visuals are based on people, client, domain, project 

needs and time. 

 

3.3.3 Recommendation  
Our recommendation is based on the extraction phase outputs. Given a new project, we first extract 

people, organization, domain and projects requirements using the extraction phase of the system. We 

then apply VSM model (Salton et al. 1983) to calculate the similarity scores between the new project 

and existing projects by comparing their summaries. We then filter existing projects whose similarity 

scores are above a certain threshold, and sort the projects. The ranked list of similar projects is then 

recommended by the system for a given new project. Similarly, corresponding supervisors will be 

recommended by the system.  

 

4. Experiments 

 
We designed our experiments to evaluate our extraction and application phase. Our experiments are 

designed to answer the following research questions.  

RQ1: How effective is extraction phase in extracting people, organization, domain and project needs?  

RQ2: How effective is our recommendation phase? 

We have in our dataset 322 projects (312 old projects and 10 new projects that start in 2015).  In 

this work, we use Wit.AI
1
, an open-source API that provides a classification toolkit, and Apache 

OpenNLP’s
2
 POS-tagger. For our experiments, to answer RQ1, we randomly choose around 70% of the 

projects for training and the rest for testing. To answer RQ2, we recommend relevant old projects and 

project supervisors to the new projects.  

                                                 
1 https://wit.ai/ 
2 https://opennlp.apache.org/ 
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4.1 Experiment 1: People and organization extraction  

We use precision, recall and F-score (Salton et al 1983) for evaluating the effectiveness of our 

classification-based method for people and organization extraction. These evaluation metrics are 

computed based on true positives (TP), false positives (FP), and false negatives (FN). We employed a 

human judge (an undergraduate student majoring in information systems) to identify people and 

organization names. Table 3 shows the results of our approach. F-score, which is the harmonic mean of 

precision and recall, is above 96% for people and organization names extraction. 
 

Table 3: People and organization names extraction results 

Entity Precision Recall F-Score 

People 100.00% 94.05% 96.93% 

Organization  100.00% 96.00% 97.96% 

 

4.2 Experiment 2: Domain extraction 

We now evaluate our approach on the domain extraction performance. To evaluate the results, we asked 

a human judge (an undergraduate student majoring in information systems) to label the outputs of our 

approach as TP, FP and FN. The domain classification results are 76.27% and 56.96% for precision and 

recall respectively. The F-score of our approach is 65.2% for domain extraction. The F-score for 

domain extraction is lower than those for people and organization extraction since not all organizations 

appearing in our dataset exist in LinkedIn. In our analysis, we observed that some are small companies, 

start-ups, or social enterprises with no LinkedIn pages.  

4.3 Experiment 3: Project Requirements Extraction 

Recall, that project needs are extracted in the form of keyphrases. We engaged two judges (two SIS 

undergraduate students) to rate the following statements on a Likert scale of 5 (1 for strongly disagree to 

5 for strongly agree):  
1. The keyphrases sufficiently represent the information contained in the project description. 

2. The keyphrases succinctly represent the information contained in the project description. 

The average rating across both subjects is 4.73 and 4.55 for sufficiency and succinctness 

respectively. The ratings suggest that keyphrases of project needs are suitable for human consumption. 
 

4.4 Experiment 4: Recommendations 

To evaluate our recommendation system, we choose projects for which the system returns at least 5 

similar projects. We use average precision to evaluate the results. The average precision is precision 

averaged across all values of recall between 0 and 1. AP@K is the cutoff at the kth result. AP@5 is 

71.6% for project manager recommendation. For evaluating the similar projects, we employed a human 

judge (an SIS undergraduate student) to label each similar project as not relevant (0) or partially 

relevant (1) or relevant (2). We then aggregate the labels to compute the normalized discount 

cumulative gain at k (nDCG@k) (Salton et al. 1983) which can handle multiple levels of relevance. 

Table 6 shows the nDCG@k scores for various values of rankings; k. nDCG ensures that highly relevant 

documents are more valuable than marginally relevant document and vice versa. The result shows that 

our recommendation system can achieve decent nDCG@1 and nDCG@5 scores of 71.4% and 86.0% 

respectively. 

4.5 Discussions  

The five major dimensions namely people, client, domain, project needs and time dimensions described 

in Section 3 for extraction phase are not exhaustive and can be extended to others such as product 

names, technologies, time zones, languages, etc. We ignore the positions and titles of the people in this 

study. For future work, extending into other facets of classification is useful for deeper insights and for 

generating better summaries of the projects. LinkedIn API provides additional attributes of a company 

such as location, employee size, etc. The additional attributes offer visibility over the more granular 

aspects of the software projects for decision making process. We leave this as an interesting future 

work. We acknowledge that this current model of matching to LinkedIn data is still open to plenty of 

improvement and we propose the following measures for improving the accuracy.  
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5. Conclusion 

This paper describes an educational projects mining system (CPMS). The main goal of CPMS is to 

mine student project repositories to discover insights and present the insights in visuals that are easy to 

interpret by the educators or school management. The insights from textual content of project 

documentations are extracted by using textual analytics, natural language processing and classification 

techniques. We are currently exploring topic models for extracting keyphrases for project needs. A big 

gap in our approach is that images and videos were not in the current work. Going forward we would 

like to take into consideration these types of data as part of our mining efforts. 
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