
Ogata, H. et al. (Eds.) (2015). Proceedings of the 23rd International Conference on Computers in Education.
China: Asia-Pacific Society for Computers in Education

Construction of an Environment to Support
Learning Systematic Debugging Process with

Worksheets and Synchronized Observation Tool

Raiya YAMAMOTOa*, Yasuhiro NOGUCHIb, Satoru KOGUREb,
Koichi YAMASHITAc, Tatsuhiro KONISHIb & Yukihiro ITOHd

aGraduate School of Science and Technology, Shizuoka University, Japan
bFaculty of Informatics, Shizuoka University, Japan

cFaculty of Business Administration, Tokoha University, Japan
dShizuoka University, Japan

*dgs15009@s.inf.shizuoka.ac.jp

Abstract: In programming exercises, some novice learners cannot finish the work, even with
unlimited time. For such learners, many debugging assist tools have been developed. However,
those tools cannot resolve typical problems of the novice learners, i.e. (1) they cannot evaluate
correctness of behaviors of their programs with information from the tools and (2) they don’t
know correct debugging process. In this paper, we propose a learning environment for
debugging with “Worksheets” for learning a correct debugging process and “Synchronized
observation tool” for visualizing behaviors of programs in a domain world. We carried out a
preliminary experiment to evaluate learning effectiveness of our system.

Keywords: Programming education, Debugging, Interactive learning environment, Visualizing

1. Introduction

In programming exercises, some novice learners cannot finish their assigned work, even with unlimited
time. Two general problems may cause this situation.
-Problem 1: They cannot manage information from standard debugging assist tools (for example,

Yokomori et al., 2001) properly to evaluate the correctness of behaviors of their programs.
-Problem 2: They do hit-or-miss debugging because they don’t know correct debugging process.
 For Problem 1, many tools that assist programming learners by visualizing the behavior of their
programs have been developed (Imaizumi et al., 2011, Moreno et al., 2004, Hanson et al., 1997) Such
tools could be effective for some novices, but not all. They fail for the following two reasons:
-Reason1-1: Algorithm and specification of program often include concepts such as roles of data

structures (for example, stack pointer), spatial feature of data structures (for example,
bottom of stack, root of tree) and relative positional relations among data structures (for
example, parent and child of tree). In this paper, we call a world that consists of such
concepts “Domain World”. However, these tools basically visualize data structures
directly that the programming language supplies (for example, variable, array).

-Reason1-2: Novice learners cannot evoke correct behavior so they cannot evaluate correctness of
behaviors of their programs with visualized behaviors.

 In response to the above reasons, we have developed a tool that can visualize the behavior of
learners’ program and correct program (corresponds to reason 1-1) and can visualize both behaviors in
parallel (corresponds to reason 1-2). They can compare the behavior of their program and correct
program using this tool. We call this tool “Synchronized Observation tool” (Tobsync: Tool for
OBservation with SYNChronized view). This tool resolves problem 1.
 For Problem 2, there is a learning support tool for debugging called DESUS (Egi et al., 2009)
However, DESUS assists trace learning of functions in learners’ programs. DESUS does not assist
learning the whole debugging process. Therefore, we propose a worksheet for learning a systematic
debugging process (hereinafter referred as to LSDP-WS: Learning the Systematic Debugging Process

269

WorkSheet). Each step of the systematic debugging process is mapped on LSDP-WS. Novice learners
can learn the systematic debugging process by working with LSDP-WS repeatedly. Tobsync is
embedded in LSDP-WS. These resolve problem 2.
 In this paper, we have developed a learning environment with Tobsync and LSDP-WS. Then
we carried out a preliminary experiment to evaluate learning effectiveness of our system.

2. Previous Research

Tobsync should visualize behaviors of programs in Domain World. Kogure et al. have already
developed a system with such feature (Kogure et al., 2012). This system analyzes a sample code
prepared by a teacher. The system replicates statement execution history and visualizes the behavior of
the sample code in Domain World. While watching the behavior, learners look for groups of executed
statements that has a certain function in the statement execution history. Then they name the found
group according to the function of the group in natural language. Through this procedure, learners
understand the behavior of program. We apply Kogure’s method to visualize the program to Tobsync.

3. Systematic Debugging Process and Novice Learners’ Problems

We designed the systematic debugging process based on debugging-by-deduction and backtracking
(Myers et al., 2012). Systematic debugging process is as follows. In step 1, programmers list up the
main function and sub functions in their source code. Then, they arrange functions’ calling relations to
make structure model. After that, they confirm correctness of structure model they made by reading
source code. In step 2, first, they select a function to be tested. In order to select the function, they adopt
a selection policy like bottom up test or top down test etc. After selecting the function, they prepare
input data for test and expected output corresponding to the input data. After this, they execute the
selected function and compare expected output and actual output. Then, they consider hypothesis on
bug(s) in the function. Finally, according to the hypothesis, they decide what to do next: whether move
to another function’s test or move to detailed check of the function. In step 3, they check behavior of
each statement with comparing to correct behavior. When they find a statement that causes unexpected
behavior, they start to check statement reversely from the statement where unexpected behavior was
observed. In step 4, they fix specification or code for the point(s) found at step 3.

Table1 shows novice learners’ problems for each step and solutions with our system.
LSDP-WS is solution for Problem {A} and {B}, Tobsync is for [C] and [D]. Problem (E) is difficult
for our current system to address directly. However, we suppose that this system can prevent
learners from repeating hit-or-miss debugging because the learners can narrow set of functions
and/or statements that might include the bug(s) by step 1-3. It means this system guides them to
focus on inappropriate functions and/or statements.

Table1: Novice learners’ problems for each step.
Step Problems
Step1: Ordering functions’
calling relations.

{A} Learners cannot recall how to arrange functions’ calling relations.

Step2: Selecting function that
might have bug(s)

{B} Learners cannot recall how to select function to be tested.

Step3: Selecting possible bug
area in the function

[C] Learners cannot imagine the behavior of a selected function.
[D] Learners cannot find difference between behaviors of their

program and correct program.
Step4: Correcting
specifications or source code

(E) They don’t know where to fix or what to fix to correct their
programs’ behavior.

270

4. The Method of Supporting Learners

4.1 Support with LSPD-WS

Learners can learn systematic debugging process by practicing with LSPD-WS repeatedly. LSPD-WS
includes sequential numbers that lead the learners to follow the systematic debugging process. The
numbers are allocated to buttons and working areas.

4.1.1 LSPD-WS for learning how to arrange the calling relations of functions

Novice learners learn the following procedure how to understand structures of their programs with WS1
that is seen in Figure 1: Phase 1 is listing functions in source code, phase 2 is arranging the functions’
calling relations to make structure model, and phase 3 is confirming the correctness of structure model
they create. On WS1, there are buttons and areas that correspond to each phase (Figure1). Concretely,
button 1 starts the phase1 ((1) in Figure1). Working area 2 suggests learners to perform the phase2 ((2)
in Figure 1). Button 3 makes the system to start the phase 3 ((3) in Figure1).

Figure 1. A user interface of WS1

4.1.2 LSPD-WS for learning how to select a function that might have bug(s)

Novice learners learn the following procedure how to select a function that might have bug(s) with WS2
that is seen in Figure 2: Phase 1 is selecting functions to be tested, phase 2 is making input data for test,
phase 3 is making expected output for the input data, phase 4 is comparing the expected output to actual
output, and phase 5 is considering and describing hypothesis. On WS2, there are buttons and areas that
correspond to each phase, similar to WS1 (Figure2). Concretely, working area 1,2,3 suggest learners to
perform the phase 1,2,3 ((1), (2), (3) in Figure2) respectively. Button 4 makes the system to start the
phase 4 ((4) in Figure2). Button 5,6 starts the phase 5,6 ((5), (6) in Figure2) respectively.

Figure 2. A user interface of WS2

271

4.2 Synchronized Observation in Domain World (Tobsync)

Tobsync visualizes the behavior of programs in Domain World. Area (1) is Domain World for
visualizing learner’s program and area (2) is for visualizing correct program. By pushing ‘prev’ and
‘next’ buttons shown in (3) and (4), learners can move visualized point in the execution history and can
observe behavior of the program (Solution for Step 3 [C]). Thus, the learner can compare the behaviors
between their program and correct program (Solution for Step 3 [D]).

Figure 3. A user interface of Tobsync

5. Experimental Evaluation of Learning Effectiveness

5.1 Hypotheses

We have three hypotheses that confirm the learning effects of our system.
-Hypothesis 1: Learners can learn systematic debugging process
-Hypothesis 2: Observation with Domain World is effective for learning debug process
-Hypothesis 3: Synchronized observation is effective for learning debug process

5.2 Experiment overview

We gathered two types of participants. Type A learners (3 people) have learned user defined functions
of programs. They are students of a department of computer science who have learned programming for
a year and a half. Type B learners (7 people) have learned programming only with main function. They
are students of a department of business who have learned programming for a half year. Type A learners
evaluate step 1-3 and Type B learners evaluate only step 3 with our system.

To begin this experiment, the learners had a pretest to establish their level. After pretest,
learners practiced three problems with our learning system. Finally, the learners had a posttest to
establish their level after learning with our system. Type A learners debugged Program of Brute-force
search algorithm in pretest, three shell sort programs that have different bug in practice Problem, and
Program of Boyer-Moore string search algorithm in posttest. Type B learners debugged Programs that
adds values in array in pretest, three different programs (Program that adds values in array, Program that
calculates average of values in array, and Program that convers decimals to binaries) in practice
program, and programs that reverses values in array in posttest. Learners did pretest and posttest with
the editor and compiler that they usually use. In practice problems, learners practice systematic
debugging process with our system to find statements that have bugs. In the pretest and posttest, the
learners tried to find bugs and modify the source code to fix the bugs. In pretest, posttest, and practice
problems, source codes with only one bug are used. We designed the difficulty of each source code
based on the types of learners for they cannot find a bug only by reading source code. Table 2 shows the
given problems by the types of learners.

For evaluation, we recorded the PC screen during the experiment and observed whether there
are changes in learners’ behavior between pretest and posttest. Hereinafter, we call these learners’
changes “behavioral changes”. In addition, learners answer the questionnaire. We also checked the
results of the pretest and posttest.

272

5.3 Results

5.3.1 Results from videos

As a result of observation of videos, significant behavioral changes that we expected were not observed
between pretest and posttest. However, some small changes reflected the debugging process they
learned were observed [Observation Fact; OF] as below:

For Type A learners, it was observed that “[OFI-1] Frequencies of cursor moving that may be
checking return value of function were increased (1 learner)” and “[OF I-2] Frequencies of cursor
moving that may be checking branch statement were increased (1learner).” For Type B learners, it was
observed that “[OF I-3] the learners who could not do anything after executing once in the pretest tried
to watch the output of their modified program in the posttest. The statements the learners tried to modify
were correct, however, they could not modify correctly (3 learners).”

Concerning Tobsync use, it was observed that all learners did synchronized observation by
using next/prev buttons, (5) in Figure 3. Some learners temporary observed behavior of each program
by using next/prev buttons, (3), (4) in Figure 3. However, they would back to use synchronize
observation function [OF II-1]. Besides, no learner stopped their working for a long time [OF II-2].

5.3.2 Descriptions in questionnaire

Q1 is “Learning with this system is more understandable than ordinary classes” (Yes/No, Describe
reason; for Hypothesis 1). Q2 is “Please describe the debugging process that you learned by our system”
(Free describing; for Hypothesis 1). Only Type A learners answered Q1 and Q2 because these are for
evaluation of LSDP-WS. Q3 is “Is it easier to observe the changes of value with Domain World than
ordinary method?” (Evaluation with 1 to 5 points, Describe reasons; for Hypothesis 3). Q4 is “Is it
useful to compare the behaviors of your program to ones of correct program to find inappropriate
statement in your program?” (Yes/No, Describe reason if no; for Hypothesis 3)
 For Q1, the average point is 3.0. The learner who gave high score (point 4 or 5) wrote the reason
that “we can consider input and output for each function.” The learner who gave low score (point 1 or 2)
wrote the reason that “I didn’t know what I was doing, but I thought it is important to write hypotheses.”
For Q2, learners wrote: “[D2-1] Writing functions’ roles, arranging function relations, searching
inappropriate point by checking input and output.” and “[D2-2] Making structure chart of function
relations and predicting inappropriate point from output, describing hypotheses from prediction,
following program’s behavior, and then find inappropriate point.” Evaluation Score of Q3 [ES 3] is as
follows: (1) the average points given by Type A is 5.0 and the average points given by Type B is 3.6. (2)
Low score (point 1 or 2) was not marked. They gave reasons like: “[D3-1] I could compare my
program’s behavior to correct one, so that I wasn’t in situation that I lose what I have to do”, “[D3-2] It
is easier to find mistakes by checking the difference between my program and correct program,” and “I
could watch program’s behaviors in real time.” For Q4, 9 learners answered “Yes” and 1 learner
answered “No.” The learner who answered “No” described reason, as “I am not good at programming.”

5.3.3 Result of pretest and posttest

As for Type A learners, 1 learner could fix bug at the pretest and the posttest and that is same learner. As
for Type B learners, no learner could fix the bug at the pretest. In contrast, 2 learners became to fix the
bug at the posttest.

5.4 Consideration

As for our observation, learner’s behavioral changes were small [OF I-1, I-2], and we couldn’t observe
significant behavioral changes. As for the descriptions in questionnaires, we can find some learners
referred systematic debugging process partially [D2-1, D2-2]. These mean that some learners became
aware of the systematic debugging process, however they could not follow the process correctly.
Therefore, we suppose that hypothesis 1 was supported partially. We consider that only three problems
were not enough to change the behavior of the learners.

273

We tried to confirm Hypothesis 2 (effectiveness of visualizing in Domain World) from Q3 and
Hypothesis 3 (effectiveness of Tobsync) from Q4, but as for the Q3, we observed that they didn’t
answer about visualizing in Domain World and Tobsync individually. Some learners’ answers at Q3
included their feels not on Domain World, but on Tobsync (see [D3-1], [D3-2]). For that reason, it is
conceivable that [ES 3] reflects not only evaluation of Domain World, but also evaluation of Tobsync.
Then, we evaluated Hypothesis 2 and 3 comprehensively from descriptions in questionnaire. From [ES
3] and [D3-1, D3-2], it can be said that synchronized observation in Domain World is evaluated
favorably. As for the Q4, most of learners answered “Yes” so we can say that comparing learner’s
programs and correct programs by Tobsync is effective. From the observation of the video, it is
conceivable that all learners compared their program and correct program [OF II-1]. Considering [OF
I-3] as well, it is suggested that even the learners who could not do correct debugging process in the
pretest could partially do themselves in the posttest. In addition, from [OF II-2], we could assume that
comparison task with Tobsync is not difficult for learners. These support Hypothesis 3. In conclude, we
observed some facts that support Hypothesis 3, but we are not sure that Hypothesis 2 was supported.

6. Conclusion

In this paper, we developed a learning environment on a systematic debugging process for novice
learners. The learning environment has 2 types of important units: LSDP-WS and Tobsync. Then, we
carried out a preliminary experiment to evaluate the effectiveness of our learning environment. The
hypotheses on the effectiveness were partially supported.
 In our future work, we will carry out another experiment to investigate novice learners’
problems in debugging. Besides, it seems our current system’s capability is limited. This is because we
think comparing actual and expected output is important. We have implemented system for this factor
first. Thus, we will expand assisting function suitably according to the results of evaluation experiment
and the investigation.

Acknowledgements

This research is supported by Japanese Grant-in-Aid for Scientific Research (B) 24300282.

References

Egi, T., & Takeuchi, A. An Analysis on a Learning Support System for Tracing in Beginner’s

Debugging. (2007). Proceedings of the 2007 conference on Supporting Learning Flow through
Integrative Technologies, 509-516.

Hanson, D,R., & Korn, J, L. (1997). A Simple and Extensible Graphical Debugger. Proceedings of the
USENIX 1997 Annual Technical Conference, 174-183.

Imaizumi, T., Hashiura, H., Matsuura, S., & Komiya, A. (2010). A Programming Learning
Emvironment “AZUR”: Visualizing Block Structures and Program Function Behavior.
Proceedings of JCKBSE’ 10, 306-311.

Kogure, S., Okamoto, M., Noguchi, Y., Konishi, T., & Itoh, Y. (2012). Adapting Guidance and
Externalization Support Features to Program and Algorithm Learning Support Environment.
Proceedings of International Conference on Computers in Education, 321-323.

Moreno, A., Myller, N., & Sutinen, E. (2004). Visualizing programs with jeliot 3. AVI 04: Proceedings
of the working conference on Advanced visual interfaces, 373-376.

Myers, G, J., Badgett, T., & Sandler, C. (2012). The Art of Software Testing 3rd Edition. New jersey,
John Wiley & Sons, Inc.

Yokomori, R., Oohata, F., Takata, Y., Seki, H., & Inoue, K. (2001). Analysis and Implementation
Method of Program to Detect Inappropriate Information Leak. Proceeding of The Second
Asia-Pacific Conference on Quality Software, 5-12.

274

