
Chang, M. et al. (Eds.) (2019). Proceedings of the 27
th

 International Conference on Computers in 

Education. Taiwan: Asia-Pacific Society for Computers in Education 

348 

 

 

Application of Programming Learning Support 

System to Object-Oriented Language 
 

Satoru KOGURE
a*

, Kento OGASAWARA
a
, Koichi YAMASHITA

b
, 

Yasuhiro NOGUCHI
a
, Tatsuhiro KONISHI

a
 & Yukihiro ITOH

c
 

a
Faculty of Informatics, Shizuoka University, Japan 

b
Faculty of Business Administration, Tokoha University, Japan 

c
Shizuoka University, Japan 

*kogure@inf.shizuoka.ac.jp 

 
Abstract: In the field of programming education, learners often cannot fully understand the 

behavior of algorithms and programs, because it is difficult for them to capture a realistic image 

of their behavior. Many researchers have proposed methods to visualize “the behavior of 

algorithm programs” as a solution to address this problem. Many programming learning support 

systems that incorporate these methods. We have developed a programming learning support 

system, TEDViT, that allows teachers to control the method of visualization. However, 

TEDViT is a programming language compatible with the C programming language, hence, the 

system cannot handle visualization in object-oriented languages. We developed and evaluated a 

prototype system that can visualize the proposed model. 

 
Keywords: Programming learning support system, visualization, object-oriented programming 

language 

 

 

1. Introduction 
 

It is essential that beginning programmers are able to grasp and understand the program behavior 

correctly. However, it can be difficult for beginners to grasp concrete behavior. As a way to solve this 

problem, many program visualization (PV) systems have been proposed to visualize the program 

behavior (Pears, 2007, Moreno et al., 2014, Guo, 2013). These PV systems can only visualize the 

behavior of the program created by the learner based on specific methods decided by the tool developer. 

Therefore, it is not possible for teachers to freely depict what they want to explain in their teaching 

materials. To solve this problem, we have developed TEDViT (Teacher Explaining Design 

Visualization Tool), a C language behavior visualization system that can reflect the teacher's the 

explanation intention (Yamashita et al., 2018). We conducted many practical programming classes 

using TEDViT. The results obtained indicate that TEDViT can contribute to the understanding of the 

program behavior. 

In this research, we propose Object-Oriented Conceptual Model (OOC Model) as a framework 

that can reflect the teacher's intention in the visualization of an object-oriented language. The OOC 

Model can express the structural relationship between classes and instances, which is one of the 

essential concepts to learn object-oriented languages. We constructed a prototype learning support 

system for Java that realized the OOC Model visualization. Herein, we report the experimental findings 

concerning the usability and usefulness of the prototype system we created. 

 

 

2. Visualization for an Object-Oriented Language 
 

To investigate problems of visualization for an object-oriented language, we need to select a target 

language. Although there are many object-oriented languages, there are some differences in the 

language specifications of each language. In this research, we focus on Java as an example of an 

object-oriented language. This research considers only the object-oriented language specific issues of 

the Java language. 



 

349 

 

In Java, basic concepts such as variables, arrays, and repeating structures are common to other 

programming languages. There is no need to newly consider the visualization of common concepts in 

this study, because their visualization is already possible using, for example, Jeliot 3 (Moreno et al., 

2014), Python Tutor (Guo, 2013), TEDViT, among others. We investigated the concepts that require 

Java-specific visualization in Java programming classes offered in the first year of the computer science 

department. As a result of excluding the above-mentioned common parts, we only focus the relationship 

class and instance. We do not consider the exception handling and IO streaming topics in this study. 

When learning the class and instance topics in object-oriented languages, it is necessary to 

understand the three concepts, (C1) the class definition and instance generation concepts (the 

relationship between a defined class and a generated instance), (C2) the inheritance concept (the 

relationship between a superclass and a subclass), and (C3) the polymorphism concept (invoking 

method of each class by the same-name method). The C3 cannot be visualized on the existing system. 

The requirement is to be able to specify the relationship between “class definition” and “instance” and 

to be able to specify which class’s method actually started. To visualize these relationships, we need a 

mechanism that can synchronously display the “program”, “class diagram” and “instance diagram”. 

We propose the Object-Oriented Conceptual Model (OOC Model) as a visualization model that 

can realize the three concepts. To understand the program behavior of object-oriented languages, it is 

necessary to visualize diagrams showing the relationship between classes, methods, and instances. To 

show relationships between classes and instances, we can use the concepts of “class diagrams” and 

“object diagrams” used in UML diagrams. However, it is necessary to develop a framework that 

emphasizes class and instance (including fields and methods) in synchronization with class-instance 

relationships and program step execution. 
 
 

3. System Implementation 
 

Figure 1 shows an overview of the developed Prototype system. The left side shows the program, and 

the right side shows the OOC Model. The learner can proceed with single-step program execution by 

pressing the [>] button. In the Figure 1, the public void printMemberInfo() on the program side 

is surrounded by red lines. This indicates that the program is currently running up to this line. This 

example shows the situation after executing ml[1].printMemberInfo() has been executed. The 

ml[1] is an instance of SpecialMember, and the printMemberInfo() method defined in 

SpecialMember class should be activated. By highlighting both the program display on the left (the 

printMemberInfo () method in class SpecialMember has been invoked) and the OOC Model on 

the right (ml[1].printMemberInfo() and the printMemberInfo() method of the 

SpecialMember class) at the same time, the learner can gain a deep understanding of polymorphism. 

 

 
Figure 1. A Screen Shot of Prototype PV System. 



 

350 

 

4. Experimental Evaluation 
 

The evaluation experiments investigate whether the following three hypotheses hold. H1 is “the use of 

Java TEDViT raises the level of understanding of Java-specific concepts,” H2 is “the OOC Model is an 

aid to learners of programming,” and H3 is “by using Java TEDViT, it is possible to understand the 

flow of a program’s operation, predict of its output, and understand the reasons for its behavior.” The 

subjects for the experiments were 17 university students in the information system area. We gave the 

subjects the following procedure: (1) View a system tutorial, (2) Answer a questionnaire before the 

experiment, (3) Use the system, and (4) Answer a questionnaire after the experiment. 

First, the rate of increase in self-evaluation for class and instance (C1)) was high at 82.3%. Next, 

the rate of increase in self-evaluation for inheritance (C2)) was 76.5%. We noted the opinion that “step 

flow of the constructor was understood well by executing step-by-step in the system”. Finally, the rate 

of increase in self-evaluation for polymorphism (C3)) was 64.7%. It is considered that this did not 

improve much because the support system did not actively explain polymorphism. This result weakly 

supports that H1 holds.  

Moreover, we obtained subjective questionnaire on the usefulness of the system after the 

experiment. The results show that although the system does not adversely affect learning, it does not 

contribute to a clear improvement in understanding. Therefore, it is judged that this questionnaire result 

rejects H2 and H3. On the other hand, there were many positive opinions on the mechanism of proposed 

prototype PV system itself, and we obtained the result that the expectation for practical use can become 

higher by further improvement. 

 

 

5. Conclusion 
 

In this research, we examined the visualization of program behavior of an object-oriented language and 

proposed an Object-Oriented Conceptual Model (OOC Model). We also constructed a prototype of a 

PV system that allows teachers to control the visualization of program behavior based on the OOC 

Model. Evaluation of the constructed system was carried out by 17 university students. The results 

suggested that the use of a prototype system improves the understanding of object-oriented learning 

concepts. Although the evaluation of the usefulness of the system was not good, we obtained the finding 

that it would be useful if the system were improved. 

In the future, therefore, we plan a number of enhancements, to include improving the user 

interface of the system, simplifying the rule setting method for the teacher, and using the system in an 

actual classroom setting. 

 

 

Acknowledgements 
 

This study was supported by JSPS KAKENHI Grant Numbers JP16K01084, JP18K11567, 19K12259 

and, JP19K12265.  

 

 

References 
 
Guo, P. J. (2013). Online Python Tutor: Embeddable Web-Based Program Visualization for CS Education. ACM 

Technical Symposium on Computer Science Education (SIGCSE). 

Moreno, A., Sutinen, E., & Joy, M. (2014). Defining and evaluating conflictive animations for programming 

education: the case of Jeliot ConAn. Proceedings of the 45th ACM technical symposium on Computer 

science education (SIGCSE '14) (pp. 629-634). New York, NY, USA. 

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., & Paterson, J. (2007). A 

survey of literature on the teaching of introductory programming. ACM SIGCSE Bulletin, 39(4), 204-223. 

Yamashita, K., Tezuka, D., Kogure, S., Noguchi, Y., Konishi, T., & Itoh, Y. (2018). A learning support system for 

visualizing behaviors of students' programs based on teachers' intents of instruction. Proceedings of the 26th 

International Conference on Computers in Education (pp.761-766). 


