Chen, W. et al. (Eds.) (2016). Proceedings of the 24™ International Conference on Computers in
Education. India: Asia-Pacific Society for Computers in Education

Designing PHyTeR: a system to teach
troubleshooting skill

Kavya ALSE", Sridhar IYER® & Sasikumar M"
*Interdisciplinary program in Educational Technology, IIT-Bombay, India
®CDAC Bombay, Mumbai, India
*kavyaalse@iitb.ac.in

Abstract: Troubleshooting skill is required by undergraduates in Computer Science training
to be IT professionals. Current curriculum in Computer Science doesn’t give sufficient
emphasis on teaching troubleshooting to learners. We are following educational design
research (EDR) to engineer a solution to teach troubleshooting skill. In this paper we present
an overview of EDR applied to this problem and the design of a system called ‘PHyTeR’.
PHyTeR is intended to teach troubleshooting to CS undergraduates by choosing scenarios
from the domain of Computer Networks. A plan of evaluation to evaluate the design of the
system is also discussed.

Keywords: Troubleshooting Skill, Teaching thinking skill, Design of learning environments,
Computer Networks, Educational Design Research

1. Introduction

Computer Science undergraduates interact with various types of systems — it might range
from running a program on an IDE to building a drone or building/interacting with multiple
versions of libraries, APIs. Troubleshooting is an important component in building and
working with all these systems. “Troubleshooting is a process which ranges from the
identification of problem symptoms to determining and implementing the action required to
fix that problem” (Schaafstal, Schraagen, & Berlo, 2000). According to Jonassen (Jonassen,
2010), troubleshooting is an ill-structured problem which needs troubleshooters to have an
understanding of the system they are troubleshooting and keep track of troubleshooting
process. Also it involves higher level cognitive activities like analyzing the behavior of the
system, generating plausible explanations for errors seen, switching between different levels
of details of the system etc. Troubleshooting like many other thinking skills is pan-domain
since it is applicable in the domains of electrical, chemical, mechanical & computer science
engineering.

Traditionally, tools like gdb, wireshark, circuit analyzers are used by educators to
teach troubleshooting. However, the problems chosen to teach troubleshooting are usually
simple compared to the open ended problems faced by professionals. Our solution approach
is that by allowing students to practice troubleshooting skill with fairly complex problems
would prepare them better for their profession. The tools will be of more use if the students
understand the process of troubleshooting. The goal of this paper is to describe the solution
approach that we are following to teach troubleshooting skill to Computer Science
undergraduate students. Then the design of a system which we call ‘PHyTeR’ is described in
detail followed by an evaluation plan for the solution.

394



2. Related Work
2.1 Troubleshooting skill

Troubleshooting is a moderately ill-structured problem because the troubleshooter has to
determine what information is needed, require deep level understanding of the system. The
competencies of troubleshooting skill has been defined by researchers from different domains
(Johnson, 1987; Ross & Orr, 2009; Schaafstal et al., 2000). Some consider it as iterative
testing of hypotheses and others argue that troubleshooting includes all processes between
representing problem space and verification of the solution. We are considering the following
competencies of troubleshooting which we have synthesized from literature: i) Problem
Space Representation, ii) Hypothesis Generation, iii) Hypothesis Prioritization, and iv)
Design & Run Tests.

2.2 Approaches to teach skills like troubleshooting

There have been worksheet based approaches to teach troubleshooting (Schaafstal, Schraagen, &
Berlo, 2000). They give a process overview of troubleshooting but fail to give contextual, domain
dependent & independent in-time scaffolds. One such approach was to train students to become better
troubleshooters by giving them structured practice on authentic problems (Ross & Orr, 2009). There
have also been many technology enhanced learning environments to teach complex skills like design,
scientific inquiry and modeling especially for school children (Basu, Dickes, Kinnebrew, Sengupta, &
Biswas, 2013; Sun & Looi, 2012; White et al., 2002) but for troubleshooting skill. These aim to teach
reasoning & skills to students in different contexts. On the other hand there have been number tools
which help college students and professionals to troubleshoot systems viz wireshark, debuggers built
in IDEs etc. They give opportunity to learners to interact with real systems/simulations but don’t help
learners in the ‘process’ of troubleshooting. It has been argued that troubleshooting needs to be taught
separately because teaching learners to build and design systems is not sufficient for them to
troubleshoot systems (Jonassen, 2010).

2.3 Expert systems to troubleshoot

Another thread of literature related to troubleshooting is where expert systems were developed to do
better troubleshooting or ‘better’ debuggers were designed. Some examples of designing better
debuggers were providing visualizations of programs being executed, providing stack traces etc. is
intended to reduce the cognitive load on troubleshooters (Hejmady, 2011). Studies on design of expert
systems have emphasized the need for students representing the problem space and having a
functional understanding of the components of a system (Kleer, Williams, & De Kleer, 1989).

3. Research Methodology — Educational Design Research

Educational Design Research (McKenney & Reeves, 2014) is a way of engineering practical solutions
to problems in educational domain. EDR can be used in designing policies, educational products,
processes or programs (McKenney & Reeves, 2014). Along with developing solution, an important
aspect of EDR is to develop theory/understanding about the development of solution or how the
solution works in a context. EDR is an iterative process of cycles consisting of problem analysis,
design & development of solution and evaluation of solution. The following diagram shows the EDR
process employed in designing the TEL environment ‘PHyTeR’. Based on the available literature on
troubleshooting skill we have designed task structure of the TEL environment. Literature on expert
and novice studies informed the affordances and scaffolds. Expert and novice studies in the domain of
Computer Networks are planned to obtain detailed inputs from the domain which would further
inform design decisions.

395



Literature abogt skill, expertise & Features & interactions of TEL On going
novice needs

Remaining
Expert Study Affordances
. Evaluation & Reflection
Novice Ptudy Scaftolds .

[ [ -

( Figure [

i

4. Theoretical Basis for solution

Following are the theoretical backings for our conjectures about learning. Modeling is aimed at
developing mental models about troubleshooting. External representations and scaffolds help in
reducing the complexity of the task.

4.1 Model based learning

Models are concrete representations of abstract objects/systems in the real world. Usually models are
built by reducing the complexities of real world to focus on few aspects of interest (Seel &
Blumschein, 2008). Modeling helps as a concrete external representation while interacting with it and
also helps in ‘meaning-making’ in the process of building it. An internal ‘mental model’ is created
when people interact with the above modeling activities and ‘meaning’ appears when these mental
models become coherent, rich with experiences, ideas, thoughts (Seel & Blumschein, 2008).
Modeling is also the activity suggested for decomposing complex processes to simpler elements and
mechanics (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013).

4.2 External Representations

Troubleshooting requires learners to have a picture of system being troubleshot & its components,
keep track of the process of troubleshooting and interpret the cause and effect relationship within the
system. Kirsh (Kirsh, 1995) argues how such complex activity can be not just supported but also
enhanced and mediated by using external representations. External visual representation have shown
to reduce the difficulty of process of problem —solving. Experts have also been shown to use visual
representations frequently during problem-solving to support reasoning (Moreno, Ozogul, & Reisslein,
2011).

4.3 Scaffolds

Quintana (Quintana et al., 2004) argue that even though introducing software tools to learners might
make the task more difficult initially, there is credit in using software tools to scaffold learners in
structuring an ill-structured problem, giving guidance and allowing them plan and monitor their
performance. Narciss (Narciss, 2013) provide a framework for providing such scaffolds using
interactive contextual feedback at different levels: cognitive, metacognitive and motivational. We are
using some of these in the design of PHyTeR.

5. Design of ‘PHyTeR’
Our design is based on a framework called ‘TELoTS framework’ (Murthy, Iyer, & Mavinkurve). This
framework gives actions & guidelines on developing a smart learning environment specifically for

thinking skills like troubleshooting. Design starts with defining the competencies of a skill, coming up
with learning objectives and assessments to evaluate the competencies. Then the framework suggests

396



analyzing expert actions and integrating the requirements with design principles to come-up with the
design of the system.

Based on this, we have designed a system called ‘PHyTeR’ to teach troubleshooting in the
domain of Computer Networks for Computer Science undergraduate students. ‘PHyTeR’ stands for P
— Problem Space Representation, Hy — Hypothesis generation & prioritization, Te — Testing which are
the competencies and R — Reflection. Next sub-sections describe the design in detail.

5.1 Key Features of ‘PHyTeR’

PHyTeR is intended to
a. Support students to switch between big picture and small picture
b. Provide in-time scaffolding & reflection questions to guide the process
c. Provide modeling and interaction with simulations in the same interface

5.2 Design of learning activities

The system provides learners with troubleshooting scenarios that are ordered from simple to complex.
There is a task corresponding to each competency and a reflection task at the end. At the beginning of
the task, the students will be explained how that task is a step towards troubleshooting. Reflection
questions will be asked when the students take decisions like selecting a hypothesis or complete a task.
The system features were derived based on learning outcomes for the competency, assessment rubrics
for the competency and inputs from expert novice literature. The following table shows how the
learning design elements for the task of problem space representation were derived.

Table 1: Components of design decisions

Competency Learning Outcome Input from Input from Learning design Features in
expert study novice studies | principles PHyTeR
Problem Students will be able Experts Novices have | Make students Question prompts
Space to analyze the system describe the inadequate describe to identify relevant
Representation | in structure and system in system structure, & components, link
function terms functional terms | understanding | function of the between them and
system their functions

5.2.1 Problem Space Representation Activity

Experts are said to have a rich representation of the problem that they are trying to solve (Jonassen,
2010). With respect to troubleshooting, this representation consists of various devices present in the
network, the links between them (structure). It also includes a representation of the function of each
device and how they combine to produce the function of the whole network.

PHyTeR helps students in building a representation of the problem by using ‘annotated
topology builder’. The topology creator has a device bar consisting different types of network devices
like terminals, links, access points etc. Students will have to drag and drop the devices on the
topology space to create the annotated topology. They will have to annotate the devices with protocols
and configurations that have to be set on the device for it to work correctly. Learners might not have
all the required domain knowledge. For this purpose, there is a domain book which has computer
networks related information (text or animations or video).

The topology that the learners create is like a reference for them to perform next
activities. Let us consider an example scenario which consists of many devices and one of the
device (terminal T2) is not able to connect to another device (Terminal T1). An example of
the annotated topology is shown in figure 2.

5.2.2 Hypothesis Generation Activity
Once students have an understanding of the problem space, they need to come up with multiple

plausible causes for the error. Learners are asked to generate hypotheses and attach these hypotheses
to the device & component to which it is related. There is a general window where hypotheses not

397



R1 SW1 SwW2 R3 ™

Function: To forward packets
Protocol: IPv4, IPv6, ARP
Configuration: DNS, Subnet mask, Firewall

related to any specific device can be noted down. Examples for the hypotheses: Internet is down,

ﬁrﬁ”‘f‘é%l}el %bkﬁlﬁg{%ﬁlﬁ%@ e8tiftEract with the simulator

= & o—eo—8& L

[a— [a—

Figure 2: Annotated Topology Map

5.2.3 Hypotheses Prioritization Activity

With a number of hypotheses at hand, the progress of troubleshooting depends on the order of
selection of hypothesis to test. This is done by prioritizing the hypotheses using different strategies.
One example of a strategy is described in a study which suggested that experts suggests hypothesis at
higher level (system/sub-system level) and then generate hypotheses at specific level
(device/component level) to investigate further (Johnson, 1987). This sort of strategy information is
given as hints to learners when they click on the hint button. A list of all the hypotheses generated by
learners is displayed along with all details related to hypotheses (the device/component to which it is
related etc.). They have to drag and order the hypotheses according to the prioritization strategy.

When the learners select one hypothesis, they will be asked a justification question —
to justify their prioritization of the hypotheses. This is intended as a metacognitive reflective
prompt and has been claimed to enhance linking between the error and plausible
explanations.

5.2.4 Design & Run Test Activity

After a hypothesis is selected for testing, the learners have to design a test. For this they have
choose the testing methods (commands to be executed, logs to be checked, configurations to
be checked etc.). Then they have to predict the result that would be obtained by performing
the test. Then an interface to the real erroneous topology (with a simulator in background) is
displayed as shown below:

08 ¢ ¢ & O

-

This topology has simulated network devices and connections between them. The learners can
click on any of these devices to open a console to interact with the corresponding device. When
learners have completed the test and obtained the result, they have to compare it with the predicted
result. If the predicted and observed results match, it means they have found a causal relationship.
They will have to record this in their causal map book. If the predicted and observed results don’t
match, then it means either the hypothesis was incorrect (then they have to test a new hypothesis) or
the test that they performed is incorrect (then they have to redesign the test). Based on the
interpretation of the result students might want to generate new hypotheses or discard previously
generated hypotheses. At this stage students can use a ‘Route Map’ which shows them a summary of
all the previous tests performed and results obtained. This is intended to help them in switching

398



between ‘small picture’ (design & perform a test) to ‘big picture’ of the overall troubleshooting
process.

5.2.5 Reflection Activity

Apart from the justification reflection activities spread in between the activities, learners will do a
‘Reflection by summarizing’ activity. Here the students will have to give a summary of the
troubleshooting process that they did and then compare it with an expert solution.

6. Proposed evaluation of ‘PHyTeR’

The first part of evaluation is to validate the competencies, troubleshooting scenarios and system
design by experts in Computer Networks. This is required because the competencies and current
design are based on literature from other domains like chemical plants and mechanical systems. The
second part of the study is to evaluate that PHyTeR actually helps in learning troubleshooting. For
this, as a first step a study is intended to improve the user interface of the system and ensure that
learners doesn’t have any difficulty in using the system and do the required tasks. This would
complete the first cycle of EDR. The research questions that we are considering for initial evaluation
of the system are: i) Does the features or scaffolds in the system help learners to complete a
troubleshooting task? ii) What is the perception of students with respect to learning and usability? A
single group pre-post study with 30 students will be conducted to evaluate their troubleshooting
abilities before & after using the system.

7. Conclusion

The paper described the design of a system called ‘PHyTeR’ to teach troubleshooting by considering
problems from the domain of computer networks. An evaluation plan based on design is proposed
which we intend to use in the evaluation of the solution.

Acknowledgements

We would like to thank all the people at IDP-ET, IIT Bombay who helped in defining and
designing the system.

References

Basu, S., Dickes, A., Kinnebrew, J. S., Sengupta, P., & Biswas, G. (2013). CTSiM: A Computational Thinking
Environment for Learning Science through Simulation and Modeling. The 5th International Conference
on Computer Supported Education.

Hejmady, P. (2011). 4 Cognitive Model and Gaze-Based Evaluation of Multiple Representation use during
Program Comprehension and Debugging.

Johnson, S. D. (1987). Knowledge and skill differences between expert and novice service technicians on
technical troubleshooting tasks. Retrieved from http://eric.ed.gov/?1d=ED290043

Jonassen, D. H. (2010). Learning to solve problems: A handbook for designing problem-solving learning
environments.

Kirsh, D. (1995). The intelligent use of space. Artificial Intelligence, 73(1-2), 31-68.

Kleer, J. De, Williams, B. C., & De Kleer, J. (1989). Diagnosis with behavioral modes. International Joint
Conference On Artificial Intelligence, 1324-1330. Retrieved from
http://portal.acm.org/citation.cfm?id=1623967

McKenney, S., & Reeves, T. . (2014). Educational Design Research. In Handbook of Research on Educational
Communications and Technology (Vol. Springer N, pp. 131-140).

Moreno, R., Ozogul, G., & Reisslein, M. (2011). Teaching with concrete and abstract visual representations:
Effects on students’ problem solving, problem representations, and learning perceptions. Journal of
Educational Psychology, 103(1), 32-47.

Murthy, S., Iyer, S., & Mavinkurve, M. (n.d.). Pedagogical Framework for Developing Thinking Skills using
Smart Learning Environments. (Under Review), IDP-ET, IIT-B.

Narciss, S. (2013). Designing and evaluating tutoring feedback strategies for digital learning environments on

399



the basis of the interactive tutoring feedback model. Digital Education Review, 23(1), 7-26.

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., ... Soloway, E. (2004). A
Scaffolding Design framework for Software to Support Science Inquiry. Journal of Learning Sciences,
13(3), 337-386.

Ross, C., & Orr, R. R. (2009). Teaching structured troubleshooting: integrating a standard methodology into an
information technology program. Educational Technology Research and Development, 57(2), 251-265.

Schaafstal, A., Schraagen, J. M., & Berlo, M. Van. (2000). Cognitive Task Analysis and Innovation of Training :
The Case of Structured Troubleshooting. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 42(1), 75-86.

Seel, N. M., & Blumschein, P. (2008). Modeling and Simulation in Learning and Instruction: A Theoretical
Perspective. In P. Blumschein, D. Jonassen, & W. Hung (Eds.), In P. Blumschein, W. Hung, D. Jonassen
& J. Strobel (Hsg.)Model-based approaches to learning: Using systems models and simulations to improve
understanding and problem solving in complex domains (pp. 17-40).

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking
with K-12 science education using agent-based computation: A theoretical framework. Education and
Information Technologies, 18(2), 351-380.

Sun, D., & Looi, C.-K. (2012). Designing a Web-Based Science Learning Environment for Model-Based
Collaborative Inquiry. Journal of Science Education and Technology, 22(1), 73-89.

White, B. Y., Frederiksen, J., Frederiksen, T., Eslinger, E., Loper, S., & Collins, A. (2002). Inquiry Island :
Affordances of a Multi-Agent Environment for Scientific Inquiry and Reflective Learning. Proceedings of
the Fifth International Conference of the Learning Sciences (ICLS)., 1-12.

400



