Chen, W. et al. (Eds.) (2016). Workshop Proceedings of the 24th International Conference on Computers
in Education. India: Asia-Pacific Society for Computers in Education

Investigating Strategies used by Novice and
Expert Users to Solve Parsons Problems in a
Mobile Python Tutor

Geela FABIC', Antonija MITROVIC® & Kourosh NESHATIAN®
*Computer Science and Software Engineering, University of Canterbury, New Zealand
geela.fabic@pg.canterbury.ac.nz

Abstract: We present PyKinetic, a mobile tutor for Python. The tutor is aimed at novices and
meant to be a complement to traditional lectures and labs. The first type of activities
implemented in the tutor is Parsons problems, which present code snippets to be ordered by
the student to produce the desired output. As a starting point towards an intelligent tutor, we
conducted a pilot study to evaluate the interface and usability of PyKinetic, and to identify and
contrast strategies used by novice learners with those of experts. Great feedback and
enthusiasm was received for the prospect of PyKinetic and interesting strategies were revealed
from both groups. The study revealed that experts, as can be expected, outperformed novice
users and used superior problem-solving strategies. In future work, we will improve
PyKinetic’s problems, feedback, activities and extend PyKinetic to provide instruction on
optimal problem-solving strategies.

Keywords: Mobile Python tutor; Parsons problems; novice/expert differences;
problem-solving strategies

1. Introduction

Learning programming is challenging: the student has to learn the syntax and semantics of the
programming language and understand its purpose in context, perform problem solving tasks, logical
thinking, as well as develop design skills and strategies (Linn and Dalbey, 1985). Apart from learning
programming concepts, the student must also understand concepts behind programming like how code
structures are being compiled and translated, as well as how programs are executed. Novice
programmers find it rather difficult to grasp these concepts, which might lower their motivation to
learn more and to practice. It takes about ten years of experience for a novice programmer to become
an expert (Winslow, 1996).

Intelligent Tutoring Systems (ITSs) are knowledge-based systems that simulate the behavior
of good human teachers and provide individualized feedback to students (Woolf, 2010). ITSs have
been proven effective in supporting student learning in different domains (Koedinger et al., 1997;
Heift and Nicholson, 2001; Melis et al., 2001, Mitrovic, 2003, 2012; van Lehn et al., 2005; Weber and
Brusilovsky, 2001). When learning a programming language, having access to an ITS is valuable for
students to practice, as it is impossible to have a human tutor available at all times. The activities
included in the ITS can be designed to focus on increasing engagement, improving students'
self-efficacy and motivation for learning. Some students may also find that using an ITS is less
socially awkward since it does not involve directly communicating with a human tutor. Hence, this
may motivate some students to use an ITS more frequently in their own time and will therefore
contribute to opportunities of gaining deeper understanding of the domain.

Python is widely used as a programming language in universities nowadays to teach
introductory programming (Guo, 2013). This project aims to develop PyKinetic (Fabic, Mitrovic and
Neshatian, 2016), a mobile tutor hoping that it would appeal better to a new generation of students,
compared to desktop or Web-based educational tools. Apart from the thriving popularity of smart
phones and mobile applications, a mobile tutor could potentially target engagement.

We present a prototype of PyKinetic, aimed to be developed as a constraint-based intelligent
tutoring system (Ohlsson, 1994). PyKinetic will be a complement to traditional lecture and lab-based

434

introductory programming courses. The current version of PyKinetic contains only one type of
activity — Parsons problems. Parsons problems (Parsons and Haden, 2006) are exercises requiring the
student to rearrange a given set of randomized lines of code to produce an expected outcome. The
prototype currently contains two types of Parsons problems, with and without distractors (extra lines
of code). In the future, we plan to add additional types of learning activities.

As an initial step towards an intelligent tutor for Python, we performed a study with
PyKinetic, in order to identify problem-solving strategies used by novices and experts. Our hypothesis
was that experts would outperform novices in speed and efficiency in solving problems, and use
optimal problem-solving strategies. The motivation of the study is to enhance PyKinetic to teach
students not only about Python, but also to provide instruction about optimal problem-solving
strategies. In the following section, we present research done on Parsons problems, educational
systems for Python and evaluations of problem-solving strategies used in solving Parsons problems.
We then introduce PyKinetic, followed by the experiment design and the findings. Section 7 discusses
the problem-solving strategies used by novices and experts. Lastly, we present our conclusions and
compare problem-solving strategies observed in our study with those of other studies.

2. Related Work

Parsons problems were originally designed to promote a fun way for students of an introductory
course in Turbo Pascal to improve their skills in syntactic constructs (Parsons and Haden, 2006).
These programming activities are suitable for novices, as they contain syntactically correct code that
only needs to be put in the right order. A variation includes puzzles with syntactically incorrect or
unnecessary lines of code (referred to as distractors) which students need to eliminate.

Denny et al. (2008) considered five variants of Parsons. The first two variants contain no
distractors, with the difference that one of them includes scaffolding such as curly braces and
indentation (since this was used in the context of Java), while the second variant does not provide any.
The next two variants are composed of paired options for each line of code given in a randomized
order but the paired options are clearly placed right next to each other. These variants were available
with and without scaffolding. The last variant contains pairs of options for each line of code, but these
pairs are provided in a random order. It was not specified whether the last variant was presented with
or without scaffolding but this variant ended up being discarded as it was perceived to be
unreasonably difficult. For example, 7 lines of code for the puzzle becomes 14 and having these 14
lines of code in a completely randomized order may be viewed by students to be overwhelming to
attempt.

There is no widespread agreement on how Parsons problems compare to other types of
exercises typically used in introductory programming courses, such as code reading, tracing, writing
and explaining. Code tracing falls into lower categories in Bloom’s taxonomy, while code writing
requires higher order skills (Thompson et al., 2008). Some researchers find Parsons problems are
easier than code tracing (Lopez et al., 2008), while others view Parsons problems to lie in between
code tracing and code writing (Lister et al., 2010). Denny et al. (2008) found a moderate positive
correlation between scores on Parsons problems and code writing questions, but only a weak
correlation between Parsons problems and code tracing questions. Therefore, they suggested that
Parsons problems were similar to code writing. There are also opinions that the position of Parsons
problems in the hierarchy of programming skills can vary, depending on their type (with or without
distractors) and complexity (Ihantola and Karavirta, 2011). Other possible factors could include the
interface used (on paper or online), and scaffolding and feedback provided.

There are some Python learning environments developed as mobile applications. An example
is Quiz&Learn Pythonl, which is a game to test and improve knowledge on Python 2.x programming
available on Android and iOS devices. The aim of the game is to answer 20 multi-choice questions
and to answer them correctly within one minute for each question as fast as possible to gain more
points. There are four help options that can be used only once each for every game: remove two
incorrect answers, skip a question, debug the code and stop the timer. Remove incorrect answers

! http://www.villekaravirta.com/projects/quizlearn-python/

435

removes two incorrect choices out of the four given. Choosing to skip a question, skips the current
question to move on to the next without answering it. Choosing the help option to debug the code
gives the users an access to a debugger which shows a line by line visualization of the execution of
the given code snippet. The last option (stop the timer) gives the user unlimited time to answer a
question. The game ends when the user answers a question incorrectly, has ran out of time, or has
successfully answered all 20 questions. The application is developed using Apache Cordova, Zepto.js,
Topcoat, SASS, Node.js and PostgreSQL. Based on observations while using the application, it seems
that it is presented more as a game rather than a tutor with game elements. It seems to be more
focused on gaming features rather than providing pedagogical aspects to support learning.

There are some educational environments for Parsons problems. Ihantola and Karavirta (2011)
present js-parsons, a JavaScript library for developing Parsons problems. The library supports “two
dimensional” Parsons problems, which allow students to drag lines of code (LOCs) from a set on the
left-hand side of the screen and drop it on the solution space on the right-hand side. The second
dimension feature is that indentations are supported and students can change the indentations of the
LOC:s in their solutions. The library is language independent, and can be used to develop Parsons
problems for any programming language. Since js-parsons is a JavaScript library, it can be used to
develop Parsons problems on webpages designed for personal computers or mobile webpages for
tablets and smartphone devices.

There are limited results in literature about problem-solving strategies used by novices and
experts for Parsons problems. Ihantola and Karavirta (2011) report on a small study involving four
experts. The study was conducted in JSParsons, a Web environment for Parsons problems built using
the js-parsons library. The study presented ten Parsons problems with distractors, which required
indentations to be specified. For each problem, the name of the algorithm was provided (such as
insertion sort). All experts used the same strategy, starting with method signatures, then proceeding
with loops and conditionals, and only at the end dealing with initialization of variables and
indentation. Another study conducted with students (Helminen et al., 2012) found that students
followed a top-to-bottom strategy for simple Parsons problems. In two problems, the first step in
98.5-99.3% of the solutions was to position the function signature. The same researchers also
developed MobileParsons (Karavirta et al., 2012) for iOS and Android mobile devices. The interface
presented the problem area on top and the solution area below in portrait mode, and side by side in
landscape mode. MobileParsons was further developed to allow limited editing of lines (Ihantola et al.,
2013).

3. PyKinetic

PyKinetic is a Python tutor developed using Android SDK to be used on smartphones. The tutor is
aimed to serve as an additional resource for novice learners to enhance their Python 3.x programming
skills. The prototype currently contains 53 Parsons problems, covering the following topics: String
Manipulation, Conditional Statements, Lists, For Loops, While Loops, Dictionaries, Tuples and Data
Types. The learner needs to rearrange given LOCs to form a correct code snippet that would produce
the expected result. There are two types of problems, with or without distractors. The number of
LOC:s per problem ranges from 3 to 16, with a maximum of 5 distractors. The learner can expand any
topic to see available problems (Figure 1, left), and select either a specific problem or ask for a
random problem. The selected problem is then presented to the learner, together with the problem
statement (Figure 1, middle). The learner can view the problem statement at any time during problem
solving (by clicking on the “?” icon on the top-right hand corner). Distractors can be removed by
tapping on the red X on the right of each LOC. Deleted lines can be retrieved by tapping on the trash
icon and selecting desired LOCs (Figure 1, right).

In this prototype, the problem space containing LOCs also serves as the solution space. This is
different to other implementations of Parsons problems (lhantola and Karavirta, 2011; Helminen et
al., 2012; Karavirta et al., 2012; Thantola et al., 2013), where LOCs need to be dragged across from
the problem area to the solution area. We decided to combine the problem and solution into a single
area in order to maximize the use of space.

436

There are problems of varying difficulty and complexity in the tutor. Each problem is
assigned the complexity level, ranging from 1 (the easiest problems) to 9. Most problems are only
code snippets, but some are functions and include function calls.

The learner can submit his/her solution to be checked at any time. The tutor contains correct
solutions for problems including alternative solutions, and the student’s solution is matched to them.
The prototype currently only provides simple feedback, informing the learner that the solution is
correct, or specifying that there are still some distractors left, or LOCs missing. Feedback also informs
the student whether the order of LOC:s is right, when LOCs are selected correctly. We plan to enhance
the diagnosis process in the next version by developing a constraint-based model of the domain
(Mitrovic, 2012).

Problem Selection

String Manipulation

Conditional Statements
Conditional Statements Return Selected to Puzzle:

if num >= 0: O

Random problem
Is it a Good Day? Problem Statement

Nested Conditionals e Rearrange lines of code to print the following:)
Nested Conditionals Numbers print(num, "Negative number’) D

Print Primes |less than 4 etc. -2 Negative number
0.4 Less than 1 D

5 Positive number for num in numbers:

0 Zero
3 Positive number elif num < 1: O

Lists

For Loops
While Loops
Tuples

Data Types

d

Figure 3. Topic/problem selection screen (left); an example Parsons problem (middle); Retrieving
LOC:s from trash (right)

4. Experiment Design

The novice participants were 8 volunteers (4 male, 4 female) recruited from an introductory
programming course at University of Canterbury. The five expert participants were tutors teaching the
same course. The study consisted of individual, one-hour long sessions. The pilot study was
conducted in September 2015, by which time the students had learnt about seven topics covered in
PyKinetic (problems on Dictionaries were not included in the pilot). The version of PyKinetic used in
the study contained 21 problems in total: for each topic, there were two problems with distractors and
one without. The problems used in the study had 3 - 16 LOCs, with a maximum of 5 distractors. Four
problems were forced to the landscape mode since they contained long LOCs, while the rest were in
the portrait mode.

After providing informed consent, the participants interacted with PyKinetic. The novices
were free to choose problems as they wished, but were asked to attempt at least one problem from
each topic. We used the think-aloud protocol (Ericsson and Simon, 1993), asking the participants to
verbalize their thoughts while interacting with the tutor. The screen of the device used for the study
was recorded including audio verbal comments of participants. At the end, participants filled a
questionnaire, the first part of which included questions about their background, while the second part
included multi-choice and open questions about PyKinetic.

We conducted sessions with experts later on, and asked them to attempt the problems that the
majority of novice participants attempted, in order to compare the problem-solving strategies used.
The experiment design was similar to the setup by (Ihantola and Karavirta, 2011). In their study, they
have observed strategies used by experts in solving Parsons problems. Thantola and Karavirta also
conducted a study with novices to identify other strategies (Helminen et al., 2012).

437

5. General Findings

When asked how much experience the participants had with Python, using the Likert scale from 1
(Not so experienced) to 7 (Highly experienced), the mean reply of novice participants was 2.12 (sd =
1.25), with only one novice judging his/her experience as 5, and the rest as either 1 or 2. The mean on
the same question for experts was 5.4 (sd = 1.34), ranging from 4 to 7.

We eliminated data about problems which the participants only viewed but performed no
actions on, and also data about two problems that were found to be buggy. A problem is considered as
attempted if the participant made at least one action on it, either by dragging and/or deleting LOCs,
viewing the trash, or submitting the solution. A move is defined as the moving of LOCs when
attempting a problem. In the way the Parsons problems were setup in the tutor, each move could
affect the positions of other LOCs. The analysis was made simpler by counting a move as one
regardless of the difference between the starting and ending positions. However, a move is considered
as an abandoned move if it was dropped on the same position where it was dragged from.

We used the Mann Whitney U test to analyze similarities and differences between the two
groups, with the significance level of 0.05. Table 1 reports the averages (standard deviations are given
in parentheses) for the number of abandoned and completed problems. The table also reports the
averages for attempted problems: submissions, moves, abandoned moves, time taken, problem
complexity, the number of LOCs/distractors, and the number of times problem statement was viewed.
The experts have not abandoned any problems, while two novices abandoned two problems each, and
two other novices abandoned a single problem each. The experts solved more problems in fewer
submissions/moves and in a shorter time, as expected. The only significant difference on the
distributions of the two groups was found for the number of submissions per problem (p = .002), and
there was a marginally significant difference on the number of moves per problem.

Table 1. Overall Results (** denotes significance on the .01 level)

Measure Novices Experts U,p
Abandoned problems .75 (.89) 0(0) ns
Completed problems 10 (3) 12.8 (3.7) ns
Submissions 2.72 (1.63) 1.29 (.08) U=0,p<.005**
Moves 13.65 (11.51) 7.3 (1.45) U=28,p=.093
Abandoned moves .62 (1.02) 26 (.17) ns

Time taken (min) 4.02 (2.6) 2.82 (1.1) ns
Problem complexity 3.79 (.78) 4.36 (.55) ns
Distractors 1.66 (.67) 2.03 (.34) ns
LOCs 8.75 (1.52) 8.87 (1.3) ns
Problem statement viewed 3.1(.85) 3.7(.8) ns

We also categorized problems by topic (for the seven Python topics used in the study), as well
as by the number of LOCs and distractors, and calculated the same measures. Using the number of
LOCs, we divided problems into long (11-16 LOCs), medium (7-10 LOCs) and short (3-6 LOCs).
The significant and marginally significant differences found are reported in Table 2. The experts were
faster in solving problems of most types, apart from While loops, but the only significant difference in
time was for Conditionals. The reason why the experts needed more time for the While loop problems
is that they attempted more complex problems of this category (in terms of the problem difficulty, and
the numbers of distractors and LOCs — all three differences are significant). The experts also
attempted more complex problems on Data types, and were significantly faster (in terms of time and
the number of submissions) in problems containing many distractors. They needed fewer submissions
to complete problems on Lists (marginally significant difference) and also fewer submissions for long
problems.

438

The highest number of errors for both groups was for the problems on Lists. One source of
confusion was related to indexing lists (e.g. my list/:2:-1]). All novices and two experts commented
that they were used to using only one colon indexing a list. This was probably one of the reasons for
the marginal difference between average submissions for this category.

Both groups were advised that the problems were presented in the increasing order of
difficulty. We observed that most novices started with easier problems, while the experts randomly
picked a problem from each topic without focusing on their difficulty. There was a significant
difference for difficulty and the number of LOCs for short problems. The experts also needed
significantly fewer moves for problems with a medium number of distractors (2-3 distractors). In
addition, the experts viewed the problem statement significantly more often in the case of problems
with few distractors (0 or 1). A potential reason for this difference is because experts use better
strategies: many novices used trial and error (as discussed in the following section), while experts are
likely to think about the problem more and review its requirements.

Table 2. Results by Problem Category (* denotes significance at the .05 level)

Problem Category Measure Novices Experts U,p
Conditionals Time 6.1 (2.96) 4.26 (.71) 6, .045*
Lists Submissions 3.6 (2.98) 1.33 (.33) 7,.065
While Loops LOCs 5.25(2.74) 10.3 (1.56) 38, .006**
While Loops Distractors .75 (.8) 2.7 (.67) 38, .006**
While Loops Difficulty 1.87 (1.25) 4.6 (.89) 38, .006**
Data Types Difficulty 3.46 (2) 5.53 (.96) 35, .03*
Long problems Submissions 2.76 (1.58) 1.18 (.25) 5,.03%*
Short problems LOCs 4.53 (.68) 5.17 (47) 35.5,.019*
Short problems Difficulty 1.78 (.97) 2.37 (44) 34, .045*
Many Distractors Time 6.76 (2.77) 3.18 (.52) 1,.003**
Many Distractors Submissions 3.85(2.35) 1.22 (.22) .5, .002**
Medium Distractors Moves 11.6 (9.82) 5.97 (.74) 6.5, .045*
Few Distractors Distractors 0(0) 21 (.04) 40, .002%**
Few Distractors Viewed 1.65 (.49) 2.96 (.95) 38, .006**

6. Questionnaire Responses

Overall, the participants were enthusiastic about the tutor, as seen from the questionnaire responses,
summarized in Table 3. The participants from both groups found PyKinetic intuitive, easy to use and
fun (the average ratings ranged from 5 to 5.6). Some participants seemed to appreciate the interface
and commented: “I¢’s nice how it pops up showing you what to do” and “Oh wow, that’s cool how you
can like slide them up... that’s nice.”

When asked whether they improved their skills by interacting with PyKinetic, the average
response from novices was significantly higher than that of experts (U = .5, p = .002). It is not
surprising that the experts’ responses to this question are much lower, as the problems were designed
for novices. A few novices seemed surprised that they learned something from the tutor: some
comments were “I’'m actually learning something here!”, “Oh cool I didn’t know you could do
something like that.” and “I’m learning stuff while doing it so that’s always a plus.”

Both groups seemed to perceive the provided problems having the right amount of difficulty
(the experts were asked whether problems are at the appropriate level of difficulty for novice learners).
The lowest rating was received from the novices about the amount of feedback provided by the tutor

439

(2.88). This was expected, since the prototype only provides simple feedback which is only available
upon submission. It is interesting that experts scored the feedback much higher. There was a
statistically significant difference on feedback rating (U = 34, p =.045).

When asked whether they would use the tutor again, seven out of eight novices agreed (the
novice who disagreed specified he/she was not interested in learning more about programming). Two
experts also stated they would like to use the tutor again since they gained new knowledge from the
tutor, specifically on indexing lists. One participant mentioned “I can really see myself practicing
Python with this on the bus or if I'm waiting for someone.” Both groups were also asked to select
programming skills they used in the tutor (reading, syntax and structure and/or logical and semantic
reasoning skills). Half of the novices responded they used all those skills, while the other novices
selected 2/3 skills. All experts responded they used all the skills.

Table 3. Summary of questionnaire responses

Question (1 Lowest to 7 Highest) Novices Experts
Was the tutor's interface intuitive and easy to use? 5.13 (0.83) 5.6 (0.55)
Was the tutor fun to interact with? 5.13(0.99) 5(1.41)

Would you say you have learned some new things and/or enhanced your

skills by interacting with the tutor? 375 (0.89) 241349

Do you think it is beneficial that this tutor is developed on a mobile

platform? 5.25(1.04) 4.8 (1.92)

Were problem statements clear enough to understand what needed to be

done? 4.5(1.41) 4.8 (1.92)

Please rate the average difficulty of the problems in the tutor. 4.5 (0.53) 4(0.71)

Do you think there is enough feedback given when attempting a problem? 2.88(0.99) 4.2 (0.84)

7. Problem-Solving Strategies

We watched the video recordings of the participants’ interactions with PyKinetic and manually
observed and identified strategies made by the participants. A wide range of strategies was observed,
some of which were used by participants in both groups. An example is to focus on a particular type
of LOC and move it (referred to as Selecting a LOC). The participants usually looked for variable
declarations, function calls and print statements, possibly because variable declarations and function
calls are normally located somewhere at the beginning of a program, whilst print statements are
normally positioned at the end. One participant made a comment along these lines: s/he just started a
problem, noticed a print statement and mentioned the following while dragging the LOC in position:
“Print statements at the end.” This strategy was used at least once by each novice. One expert used
this strategy. However, it is important to note that this strategy was not used in all problems; it was
observed that the participants’ strategies changed depending on the nature of the problem and its
expected output.

A more specific version of this strategy was used for problems with functions, when the
participants moved the function statement first, followed by the docstring. This strategy was very
evident in both groups: five novices and four experts used this strategy for all problems that contained
functions. The only situations when this strategy was not used were when those statements were
already in place (please note that LOCs were presented in a random order), or when the participant
was clearly missing the relevant declarative knowledge. The latter was observed only with novices
who used sub-optimal strategies (discussed in Section 7.1).

Another strategy used by both novices and experts was to move distractors (except the very
obvious ones) to the end of the solution. Some of the statements novices made during this strategy
were “just in case 1 still need it” or “I don’t want to delete the other print lines yet just in case I do need
them, but I'll put them down the bottom.” Only two experts used this strategy since experts were

440

generally better at eliminating distractors. Having said that, it seemed that the experts were only doing
so because they were too focused on their model solutions to deal with distractors immediately.

All of these strategies require domain knowledge: knowing relative position for specific types
of statements, or being able to identify distractors. However, the majority of other observed strategies
were used exclusively by one group of participants; those strategies clearly show the difference in
domain knowledge between novices and experts. We present those strategies in the following
subsections.

7.1 Strategies Used by Novices

Half of the novices grouped LOCs on the basis of their indentations. Such a strategy shows lack of
knowledge, as novices were relying on a superficial feature rather than trying to understand the
meaning of LOCs. The reliance on the indentations as scaffolding was also mentioned by a participant:
“Sometimes with the loops ... the indentations give away a lot and you can just you know ... without
having to read much on what they mean.” This strategy allowed novices to eliminate distractors. The
strategy was also useful for arranging the LOCs logically, especially with conditional statements.
After applying this strategy, the novices either tried to reason about the LOCs in each group, or used
the trial and error strategy. One participant mentioned “Okay let’s put all the indentations at the
same...” then tried to read the code, to find the correct lines. Another novice mentioned: “So I'm like
trying to find the systematic way of like sorting it.” Following this, the novice also mentioned “So now
I’'m gonna work out which ones would make sense.”

A common strategy used by novices was trial and error. After solving parts of the problem the
participant was knowledgeable about, the participant then tried to solve the rest of the problem by
exploring possible solutions, which resulted in multiple submissions. For example, the participant
would move a single LOC and submit the solution immediately, in order to eliminate wrong solutions.
In some of the situations, the novices asked the researcher for help. This strategy was used when the
novices were struggling with problems, therefore illustrating lack of knowledge. Additional evidence
can be observed from their utterances, such as “I’m just gonna get to try all of them and figure out why”
and “This is one of the questions that is probably more complex than my brain ... whether or not I give
up ... Idon’t know”. Three out of eight novices used trial and error, and two other novices commented
that they could see that trial and error can be used as a strategy.

One novice used a unique strategy, when he/she deleted all the LOCs, and then retrieved the
necessary ones from the trash. The participant eventually abandoned the problem, so this strategy
might be due to high cognitive load.

7.2 Strategies Observed in Experts

A common strategy used by experts was to build the solution from top to bottom (referred to as the
top-down strategy). For example, some experts mentioned that function statements have to be first, so
they looked for this line and moved it first, then the docstring and other LOCs, until the return or print
statement. This strategy shows that experts have a model of the solution, and are working towards
matching it. All experts used this strategy, but not always exclusively. One expert alternated between
this and another strategy, which consisted of combining syntactically and logically similar LOCs with
similar indentations and then logically placing them in the correct order (e.g. similar print statements
with similar indentations placed at the bottom).

While the experts were searching for LOCs according to their model solution, three of them
were at the same time deleting distractors which were syntactically incorrect lines of code. The other
two, on the contrary, left such LOCs and deleted them at the end, although it was clear they
understood those LOCs were distractors. Generally, the experts were good at identifying distractors.

441

8. Discussion and Conclusions

We reported on a pilot study with a prototype of a mobile Python tutor which contained Parsons
problems. Our primary goal was to investigate problem-solving strategies used by novices and experts.
The study was conducted with 8 novice students and 5 experts. The participants were generally
enthusiastic about the prospect of using PyKinetic as an additional tool to learn Python, and found the
problems of appropriate nature and complexity. We received good suggestions for further
improvement of PyKinetic, such as adding a short tutorial for first-time users, improved feedback and
hints on solving problems. The enthusiasm from the participants was encouraging, with seven out of
eight novices and two out of five experts interested to use the tutor again.

Feedback received also included suggestions for the interface. Overall, the interface was
considered to be intuitive and user-friendly. As mentioned earlier, Parsons problems were presented in
PyKinetic in either portrait or landscape mode, which gave us additional insights about the interface.
It was observed that in problems presented in the landscape mode, most LOCs were obscured, which
seemed to increase extraneous cognitive load for many novices. Some participants commented that
the problems in the landscape mode seemed more difficult because the full view of the problem was
not available.

We have observed several effective problem-solving strategies used by both novices and
experts such as using declarative knowledge to focus on particular LOCs and position them first, and
moving distractors to the end of the code. The strategies used by experts demonstrated a higher level
of knowledge, as they mostly used the top-down strategy. One expert used an optimal strategy of
grouping LOCs with similar indentations, syntax and semantics then logically placing them in their
respective positions. We have also observed several strategies when dealing with distractors. Experts
appeared to be better in identifying distractors compared to novices.

As mentioned in Section 5, our experiment design was similar with the study conducted by
Ihantola and Karavirta (2011). The number of experts in their study were similar to ours. Most experts
in our study followed a top-down strategy, solving the problem from the function statement through to
the return or print statement. Ihantola and Karavirta reported a similar top-down strategy. However,
they have not observed the experts to move all lines perfectly (in the correct order). This is maybe
because of the algorithmic nature of their problems compared to ours, which focused on honing basic
Python programming skills for novices. Nevertheless, we have confirmed their findings on the
top-down strategy observed in experts. This shows that experts solving Parsons puzzles are working
towards a mental model solution.

The novices used sub-optimal strategies such as trial and error. None of the novices used the
top-down strategy; this contradicts the findings reported by Helminen et al. (2012), where majority of
the novices were observed to follow the top-down strategy. The reason for this may be the noticeable
difference between the length and complexity of the problems used in their study (five problems with
3-8 LOCs without distractors), compared to our study involving 21 problems with 3-16 LOCs and 0-5
distractors per problem. Helminen et al. (2012) also focused on analyzing only three out of the five
problems, which made their data set smaller. However, they have also observed a more specific
strategy for Selecting a LOC which was to select a for loop or an if statement first (Helminen et al.,
2012).

Another strategy we have observed for novices was to group LOCs by indentation, which is
based on superficial scaffolding feature rather than on code logic and semantics. One expert was
observed to have used an optimal variation of the strategy to group LOCs by indentation. The expert
demonstrated a strategy of grouping syntactically similar statements with the same indentation while
also positioning LOCs in place and removing distractors. Both groups were also observed to have
strategies on dealing with distractors.

A limitation of this study is the low number of participants. PyKinetic is still in the early ages
of development and several evaluation studies will be designed and conducted using the next versions
of the tutor. Based on our observations and feedback received from the study, we plan to improve
PyKinetic in various aspects: problem authoring, feedback and activities included in the tutor. The
buggy problems discovered in the study have since been fixed, and we have added context for
problems. We also aim to develop additional types of activities for the tutor such as Parsons problems
with missing keywords, erroneous examples, and predicting output.

442

As mentioned in Section 1, we plan to extend PyKinetic to provide instruction about optimal
problem-solving strategies. For example, the system could offer instruction on specific topics the
students are struggling with, or the system could refer the student to other potential sources. The
system could also advise students about more effective problem-solving strategies, observed in
experts. Lastly, we plan to include support for self-explanation, an important meta-cognitive skill
which improves learning outcomes, and also to introduce game elements to maximize engagement
(Mayer and Johnson, 2010).

References

Denny, P., Luxton-Reilly, A., & Simon, B. (2008). Evaluating a new exam question: Parsons problems. In Proc.
4" Int, Workshop on Computing Education Research (pp. 113-124). ACM.

Ericsson, K. A., & Simon, H. A. (1993). Protocol Analysis: Verbal Reports as Data (Revised Ed). Cambridge:
MIT Press.

Fabic, G., Mitrovic, A., & Neshatian, K. (2016). Towards a Mobile Python Tutor: Understanding Differences in
Strategies Used by Novices and Experts. In Proc. 13" Int. Conf. on Intelligent Tutoring Systems, Zagreb,
Croatia, June 7-10, 2016. (Vol. 9684, p. 447). Springer.

Guo, P. J. (2013). Online Python tutor: embeddable web-based program visualization for CS education. In Proc.
44" ACM Technical Symposium on Computer Science Education (pp. 579-584). ACM.

Heift, T., & Nicholson, D. (2001). Web delivery of adaptive and interactive language tutoring. Artificial
Intelligence in Education,12(4),310-325.

Helminen, J., Thantola, P., Karavirta, V., & Malmi, L. (2012). How do students solve parsons programming
problems?: an analysis of interaction traces. In Proc. 9" International computing education research
conference (pp. 119-126). ACM.

Ihantola, P., & Karavirta, V. (2011). Two-dimensional parson’s puzzles: The concept, tools, and first
observations. Journal of Information Technology Education, 10 (IIP), 119-132.

Thantola, P., Helminen, J., & Karavirta, V. (2013). How to study programming on mobile touch devices:
interactive Python code exercises. In Proc. 13th Koli Calling Int. Conf. on Computing Education Research
(pp. 51-58). ACM.

Karavirta, V., Helminen, J., & Thantola, P. (2012). A mobile learning application for parsons problems with
automatic feedback. In Proc. 12™ Koli Calling Int. Conf. Computing Education Research (pp. 11-18).
ACM.

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M.A. (1997). Intelligent Tutoring goes to school in
the big city. Artificial Intelligence in Education, 8(1), 30-43.

Linn, M. C., & Dalbey, J. (1985). Cognitive consequences of programming instruction: Instruction, access, and
ability. Educational Psychologist, 20(4), 191-206.

Lister, R., Clear, T., Bouvier, D. J., Carter, P., Eckerdal, A., Jackova, J., ... & Thompson, E. (2010). Naturally
occurring data as research instrument: analyzing examination responses to study the novice programmer.
ACM SIGCSE Bulletin, 41(4), 156-173.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008, September). Relationships between reading, tracing and
writing skills in introductory programming. In Proc. 4™ Int. Workshop on Computing education research
(pp. 101-112). ACM.

Mayer, R. E., & Johnson, C. I. (2010). Adding instructional features that promote learning in a game-like
environment. Journal of Educational Computing Research, 42(3),241-265.

Melis, E., Andres, E., Budenbender, J., Frischauf, A., Goduadze, G., Libbrecht, P., ... & Ullrich, C. (2001).
ActiveMath: A generic and adaptive web-based learning environment. Artificial Intelligence in Education,
12,385-407.

Mitrovic, A. (2003). An intelligent SQL tutor on the web. Artificial Intelligence in Education, 13(2-4), 173-197.

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: what we have achieved and where we are going.
User Modeling and User-Adapted Interaction, 22(1-2), 39-72.

Ohlsson, S. (1994). Constraint-based student modeling. In Student modelling: the key to individualized
knowledge-based instruction (pp. 167-189). Springer Berlin Heidelberg.

Parsons, D., & Haden, P. (2006). Parson's programming puzzles: a fun and effective learning tool for first
programming courses. In Proc. 8" Australasian Conf. Computing Education (pp. 157-163). Australian
Computer Society, Inc..

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., & Robbins, P. (2008). Bloom's taxonomy for CS
assessment. In Proc. 10" Conf. Australasian computing education-Volume 78 (pp. 155-161). Australian
Computer Society.

443

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., Weinstein, A. &
Wintersgill, M. (2005). The Andes Physics Tutoring System: Lessons Learned. Artificial Intelligence in
Education, 15(1), 147-204.

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for Web-based instruction.
Artificial Intelligence in Education, 12(4), 351-384.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM SIGCSE Bulletin, 28(3),
17-22.

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing
e-learning. Morgan Kaufmann.

444

