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Abstract: Considerable evidence demonstrates that motivational constructs predict 

educational outcomes, but little research has examined how these constructs manifest within 

online learning systems. This study addresses this gap by surveying Math Identity measures 

(self-concept, value, and interest in mathematics) and correlating them to behavior and 

performance within Reasoning Mind’s Foundations system for elementary mathematics.  
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1. Introduction

Studies of online learning environments primarily focus on short-term learning measures, 

performance on standardized tests, and other normative learning outcomes. Research shows that 

intelligent tutoring systems (ITS) produce learning improvements roughly equivalent to one-on-one 

tutoring, while functioning at a much larger scale (Kulik & Fletcher, 2016; Ma et al., 2014). 

Comparatively less research examines how student engagement predicts long-term development of 

interest (e.g. Ocumpaugh et al., 2016), value, or self-concept. 

Early work suggests that positive self-concept is associated with goal setting (Bong & 

Skaalvik, 2003). Domain-specific self-perceptions, e.g., math self-concept, are known to predict 

achievement above and beyond measures of ability (Spinath et al., 2006). Self-efficacy is theorized 

to influence everything from self-regulatory behaviors in Expectancy-Value Theory (Eccles et al., 

1983; Wigfield & Eccles, 2000), to interest in Social Cognitive Career Theory (Lent et al., 2002), the 

latter of which encompases both intrinsic interest (e.g., Gottfried, 1985) and utility value (e.g., 

Eccles et al., 1983). 

Childhood development of math self-concept, interest, and value is not thoroughly 

understood. Self-concept measures are often only weakly correlated to performance (Gottfried, 

1985; 1990, Steinmayr & Spinath, 2009). However, both self-concept and interest have reciprocal 

relationships with achievement (Guay et al., 2003; Marsh & Yeung, 1997), which suggests that even 

though they are separate constructs, they are each necessary components to understanding which 

students are most likely to show sustained engagement. The detailed documentation of ITS offer 

opportunities to explore how different experiences encourage students to value domain learning and 

to incorporate domain-specific success into their self-concept (e.g., math identity) in ways that lead 

to long-term interest. Yet developmental research shows that these scores are more often start high 

and decline rather than grow with experience (Frenzel et al., 2010). 

This study examines the early development of math identity among elementary students 

working with Reasoning Mind, an ITS for mathematics. We operationalize this concept by adapting 

three survey scales (self-concept, interest, and utility value) used by Ryan & Ryan (2005) to explore 

how social stereotypes affect math idenity. We survey students at the start and end of the school year 

to examine how differences in these scales relate to student behaviors within the learning software. 
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2. Reasoning Mind 
 

Reasoning Mind (RM) is an ITS for mathematics that is used by over 100,000 pre-K to 8th grade 

students in the U.S. Prior work shows that it is associated with higher test scores (Boriack et al., 

2015), interest (Waxman & Houston, 2012), and student engagement (Ocumpaugh, 2015). RM 

activities are organized within the context of RM City, a virtual town where students navigate from 

building to building using multiple modes: Guided Study (the main learning mode), My Place 

(where students decorate their virtual room) and Game Room (students participate in timed speed 

games, or solve math puzzles, like those found in the Riddle Machine). Content is classified by 

function and difficulty (Khachatryan et al., 2014). Theory problems teach mathematical concepts 

with animations and exercises. Notes Test problems require students to review Theory concepts 

while reinforcing good note-taking practices. A-level problems test basic material, while B-level 

problems may require multiple skills or steps. C-level problems are conceptually advanced, 

requiring higher-order thinking. While using RM students interact with virtual characters, including 

a pedagogical agent known as the Genie. Interactions are largely automated, but students can send 

email messages to the Genie (through RM software), which is answered in character by RM 

employees in a Wizard-of-Oz manner.  
 

 

3. Methods 
 

3.1 Students and Surveys 

 

This study surveys 394 Texas students who used Reasoning Mind during their regular 2nd-5th-grade 

mathematics instruction in the 2016-2017 school year. Surveys questions were adapted from Ryan 

and Ryan’s (2005) study on identity in mathematics, and they were administered using a 4-point 

Likert-style scale. Three different Math Identity scales were used, including  mathematics 

self-concept (5 items capturing the degree to which students see themselves as a “math person,” e.g., 

“I have always been good at math”), interest in mathematics (3 items capturing intrinsic curiosity or 

enjoyment of mathematics, e.g., “How much do you like math?”), and value of mathematics (5 items 

capturing the degree to which students find math useful, e.g., “How important is it to you to get good 

grades in math class?”). The Cronbach’s α of each scale was 0.72, 0.69, and 0.72, respectively. 

 

3.2 Feature Engineering 

 

A total of 185 features were extracted from over 3.5 million interaction log events produced across 

the school year, and measures related to these actions were aggregated into monthly and yearly 

values. These include basic measures of performance, e.g. the percentage of correctly worked 

problems in Guided Study, the Office, and the Notes Test, across A-level, B-level, and C-level 

problems as well as activities in the Game Room and the Riddle Machine. We also assessed students’ 

rates of contextual guess and slip (Baker et al., 2008). Other features included measures of how 

students spent the points that they earned in the system (for books, videos, and decorations) and 

features designed to capture goal-setting or challenge-seeking behaivors such as voluntarily working 

on difficult C-level problems. 

Performance and temporal measures were used to contextualize some features, such as 

students’ hint use (hints during poor vs. strong performance or followed by short or long pauses), the 

average time between an incorrect answer and a student’s next response, and the proportion of 

incorrect answers in a moving six-second window. Some features were generated only at the yearly 

level , while other descriptive and summary features were generated at a monthly level and allowed 

us to examine yearly trends (slope, skewness, and kurtosis). 

 

3.3 Analyses 

 

Features were correlated against three identity scales: value, self-concept, and interest in 

mathematics. We examined both pre-year and post-year scores, as well as change from pre-year to 
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post-year. The nonparametric Spearman Rho correlation coefficient was used, as normality 

assumptions were not universally met for our measures, and Benjamini and Hochberg’s (1995) false 

discovery rate (FDR) control was applied due to the large number of tests (168 features x 9 

outcomes). Only correlations that meet this adjusted significance criteria are discussed. 
  

 

4. Results 
 

4.1 Pre-Year and Post-Year Surveys 

 

Paired-samples t-tests found no significant score differences between pre-year and post-year 

measures for value, t(393) = -0.284, p = 0.777, self-concept, t(393) = -0.620, p = 0.536, or interest, 

t(393) = 1.728, p = 0.085, though there was some evidence of a positive trend for interest. Ceiling 

effects may partially explain these findings: 81% of students had pre-year scores within a standard 

deviation of the maximum score for value, 40% for self-concept, and 58% for interest. As Table 1 

shows, students above the median pre-year score (‘high’) for each subscale show slight decreases in 

their average post-year scores (-1.1 self-concept, -1.0 value, -1.2  interest), while those at are or 

below the median (‘low’) increase slightly (+1.0 self-concept, +1.1 value, and +0.6 interest).  
 

Table 1 

Averages for low and high-scoring students, as divided by median scores for each outcome measure. 

  PRE-YEAR  POST-YEAR   

  Low High All Low High All CHANGE 

  Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD Low High All 

S.C. 12.3 2.16 17.9 1.44 14.7 3.36 13.3 3.31 16.8 1.98 14.8 3.46 1 -1 0.1 

Val. 17.7 2.33 20 0 18.2 2.22 17.8 3.16 19 2.69 18.2 2.19 1.1 -0.7 0 

Int. 10.5 2.57 15.1 0.81 12.6 3.05 11 3.31 14 1.98 12.4 3.14 0.6 -0.9 -0.2 

 

4.2 Correlations with Self-concept 

 

Table 2 summarizes the features associated with pre-year and post-year self-concept scores. Of the 

19 features that correlate to one or more of the outcome measures in this study, 18 correlated with 

the post-year scores of self-concept,  7 correlate to its pre-year scores, and none correlate to 

change. 

 

Table 2 

Correlations between student interaction features and self-concept; asterisks mark sig. p-values 

(after FDR corrections). Sig. negative correlations are in light gray; positive correlations are in 

dark gray. 

  Pre-year Post-year Change 

  rho p   rho p   rho p   

A-level Problems: %Correct (Avg) 0.183  0 * 0.263 0.00 * 0.105 0.04   

A-level Problems: %Correct (SD) -0.121 0.02   -0.202 0.00 * -0.102 0.04   

B-level Problems: %Correct (Avg) 0.162 0.00 * 0.202 0.00 * 0.03 0.56   

B-level Problems: %Correct (SD) -0.2 0.00 * -0.155 0.00 * 0.055 0.29   

C-level WoM: %Correct (Avg) 0.141 0.00 

 

0.196 0.00 * 0.062 0.22   

C-level WoM: Prop. Of Actions (Avg) 0.122 0.02 

 
0.168 0.00 * 0.041 0.41   

C-Level WoM: Prop. Of Actions (SD) 0.118 0.02 

 

0.16 0.00 * 0.039 0.44   

C-level WoM: Prop. Of Time (Avg) 0.124 0.01 

 

0.172 0.00 * 0.061 0.22   

C-Level WoM: Prop. Of Time (SD) 0.122 0.02   0.168 0.00 * 0.043 0.4   

Known Skills: Cont. Guess (Avg) -0.169 0.00 * -0.212 0.00 * -0.068 0.18   
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Known Skills: Cont. Slip (Avg) -0.168 0.00 * -0.219 0.00 * 0.074 0.14   

Speed Game: %Correct (Avg) 0.155 0.00 * 0.213 0.00 * -0.063 0.21   

Speed Game: %Correct (SD) -0.065 0.20 

 

-0.16 0.00 * -0.092 0.07   

Speed Game: Completion Time (Avg) -0.093 0.07 

 
-0.159 0.00 * -0.081 0.11   

Theory Problems: %Correct (Avg) 0.142 0.00 
 

0.209 0.00 * 0.087 0.08   

Theory Problems: %Correct (SD) -0.127 0.01   -0.166 0.00 * 0.064 0.2   

Wrong after 6sec: Prop. Of Actions (Avg) -0.163 0 * -0.245 0.00 * -0.117 0.02   

 

One pattern that emerges in this data is the relationship between features based on the 

percentage of correctly worked problems and the standard deviation (SD) of the same value. For 

A-level, B-level, Speed Games and Theory Problems, the percentage of correct problems (Avg) is 

positively correlated with post-year self-concept scores, but the SD is negatively correlated. This 

suggests that while average performance is associated with self-concept, students who show less 

consistency in their performance are less likely to have a strong self-concept. Trends for this pattern 

are also seen in the pre-year values for self-concept, which is positively correlated with percent 

correct for three of these problems types (A-level, B-level, and Speed Game Problems) and 

negatively correlated with one of the SD measures (for B-Level Problems). 

Another important set of patterns that emerge is self-concept’s relationship to performance on 

C-level Problems (the most advanced problem type) and known skills. Six features associated with 

C-level Problems are positively correlated with post-year self-concept scores. Generally speaking, 

learners who chose to spend time and actions on C-level Problems and performed well on them 

reported higher post-year self-concept. Conversely, features related to known skills (Guess and Slip) 

are both negatively correlated to post-year scores of self-concept. 

Finally, we see relationships between self-concept scores and speed measures. The feature, 

“Wrong After 6 Sec” is negatively correlated with self-concept scores, as is the Average Completion 

Time (slower pace) in the Speed Game. These trends suggest that students rapidly guessing on 

normal problems,or not answering questions quickly in speed games are also lower in math 

self-concept. 

 

4.3 Correlations with Value 

 

Only 5 features are significantly correlated to value scores: 4 to post-year scores and 2 to pre-year 

scores (see Table 3). Average performance (percent correct) is positively correlated to value. For 

post-year results, only 2 features are significant, and for pre-year results, only performance on 

A-Level problems is significant. Likewise, the SD of average performance is negatively (but not 

significantly) correlated to both pre-year and post-year value. Features related to C-level Problems 

are not significantly correlated to value, but those related to performance on Known Skills (Slip and 

Guess) are negatively correlated. 

Results for features related to speed also mimic the trends for self-concept. Speed Game 

Completion Time is negatively correlated to value scores, as are frequent incorrect attempts during 

regular activities (Wrong After 6 Sec). Though the former is not significant, it is notable in that it 

follows the trend seen for self-concept; the latter is significant, but only for post-year scores.  

Table 3 

Correlations between student interaction features and value; asterisks mark sig. p-values (after 

FDR corrections). Sig. negative correlations are in light gray; positive correlations are in dark 

gray. 

  Pre-year Post-year Change 

  rho p   rho p   rho P   

A-level Problems: %Correct (Avg) 0.171 0.00 * 0.233 0.00 * 0.096 0.06   

B-level Problems: %Correct (Avg) 0.126 0.01   0.168 0.00 * 0.076 0.14   

Known Skills: Cont. Guess (Avg) -0.163 0.00   -0.197 0.00 * -0.061 0.22   

Known Skills: Cont. Slip (Avg) -0.173 0.00 * -0.203 0.00 * -0.041 0.42   
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Wrong after 6sec: Prop. Of Actions (Avg) -0.143 0.00   -0.218 0.00 * -0.087 0.09   

 

4.4 Correlations with Interest 

 

Like value, interest scores correlate to a total of five features. As shown in Table 4, only one feature 

is associated with pre-year scores for interest, and the general pattern of correlation coefficients 

mirrors self-concept and value. Average performance (percent correct) is positively correlated with 

higher scores, and this finding is significant for A and B-level problems. The SD of B-level problem 

performance is negatively correlated with both pre- and post-year scores of interest, though not with 

normalized gains. Wrong after 6 seconds is again significant for post-year scores. 

Though not significant for self-concept or value, students who became faster at solving 

speed game problems over the course of a year show higher post-year interest. This suggests that 

students interested in mathematics also become more skilled at fast mental-math style operations. 

 

Table 4 

Correlations between student interaction features and interest; asterisks mark sig. p-values (after 

FDR corrections). Sig. negative correlations are in light gray; positive correlations are in dark 

gray. 

  Pre-year Post-year Change 

  rho p   rho P   rho P   

A-level Problems: %Correct (Avg) 0.074 0.14   0.181 0.00 * 0.101 0.05   

B-level Problems: %Correct (Avg) 0.134 0.01   0.235 0.00 * 0.119 0.02   

B-level Problems: %Correct (SD) -0.197 0.00 * -0.235 0.00 * -0.033 0.53   

Speed Game: Completion Time (Slope) -0.043 0.39   -0.207 0.00 * -0.176 0.00   

Wrong after 6sec: Prop. Of Actions (Avg) -0.09 0.08   -0.183 0.00 * -0.093 0.07   

 

 

5. Conclusions and Future Research 
 

This study examines how Reasoning Mind student interactions correlate with math identity, which is 

operationalized as math self-concept, value, and interest. Notably, there are not large decreases in 

these scores, despite these children being at an age when research suggests that their self-concept 

should drop. The features examined include both those which were derived directly from 

performance (e.g. Percent Correct) and those more likely to demonstrate student choices (e.g., 

proportion of time on C-level problems). This variation in feature design was deliberate, as the 

literature has been careful to define self-concept as distinct from simple performance measures.  

Two trends emerge from our data that provide further opportunities to study math identity. 

First, while average performance on A, B, and C-level problems is positively correlated with all 

three survey scales, standard deviations for these measures are negatively correlated. If students 

perform better on these problems, they also score higher for self-concept, value, and interest. 

However, relatively minor changes in performance (as reflected by higher standard deviations) may 

affect students’ identity despite high overall performance. This fits with the literature on the 

developmental patterns associated with this age group, even though most of the students in this 

sample are not experiencing declines. Second, low post-year self-concept and value scores are 

associated with more guess and slip (Baker et al., 2008); the higher the probability that a student’s 

actions are random guesses or careless errors, the lower their post-year scores for self-concept and 

value. 

There are multiple avenues for future research, but analyses examining potential thresholds 

for improved math identity (e.g., a specific slope of performance over the course of the year that 

correlates with improvements) seem particularly important. Identifying the point at which students’ 

self-concept typically starts to increase could help us to better understand identity development and 

to support students who might otherwise not notice their improvements because they are continuing 
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to receive challenging material rather than being allowed to plateau. In doing so, we have tried to 

address an area of research that has not been thoroughly explored by ITS researcers.. 
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