

Knowledge Tracing Within Single

Programming Exercise Using Process

Data
Bo JIANG

a*
 , Yun YE

a
, Haifeng ZHANG

b
a College of Education Science and Technology, Zhejiang University of Technology, China

b School of Computer Science, Carnegie Mellon University, USA
*bjiang@zjut.edu.cn

Abstract: Knowledge tracing is a core technology in many intelligent learning systems. In
this paper, we propose a novel knowledge tracing method that predicts learner’s knowledge

state within a single programming exercise. Given a programming task, a student’s

intermediate solution is represented by an abstract syntax tree and evaluated by computing

its tree edit distance to the best solution. With the measure of solution quality, the learning

trajectory of each student can be encoded as a real-valued sequence. Using the mean value

of the sequence as a primary feature, we developed a logistic regression model to predict

students’ knowledge state. We compared our method with three popular models on a

large-scale dataset collected from a classic block-based programming task. The

experimental results suggest that the proposed method that captures features derived from

student's problem-solving processes can significantly improve the prediction performance.

Keywords: Bayesian knowledge tracing, deep knowledge tracing, additive factor model,

block-based programming

1. Introduction

Programming exercise for students is more than just coding. Indeed, it is a cognitive process that

requires rather sophisticated computational problem-solving skills regarding concepts, practices and

perspective (Mitchel et al., 2009). The assessment of such computational skills has important
pedagogical value in computational thinking education. Most research on measuring computational

skills in programming tasks have relied on the final code students completed checking the use of

programming constructs such as loops, conditionals and logic. This approach is incomplete as it

ignores the learning paths that can be substantially different among individuals and thus better
reflect students’ mastery of knowledge and skills than the finished products (Grover et al., 2017).

Knowledge tracing (KT) is a task that estimates students’ proficiency of the required

knowledge components using data collected from their problem-solving processes. Predicting
students’ knowledge states allows educators to recommend suitable learning resources in students’

needs. The most popular knowledge tracing method in literature is the Bayesian Knowledge Tracing

(BKT). It models a student’s knowledge by a latent variable in a hidden Markov chain and updates
its state by observing the correctness of each attempt in which he or she applied the knowledge and

skills in answering the question (Corbett and Anderson, 1995). Another important KT method is

called Additive Factor Model (AFM), which estimates the probability of a student being correct on

the first attempt using a logistic model (Cen, et al., 2007). Most recently, Piech et al., (2015)
proposed a method namely Deep Knowledge Tracing (DKT) that utilized long short-term memory

(LSTM) model to predict students’ knowledge state. All these KT techniques require students to

complete multiple exercises and use information like their performance on knowledge component or
the number of attempts to build prediction models. Inspired by this fundamental observation, in this

paper, we seek to develop a more comprehensive and efficient solution to estimate knowledge state

using deeper process data within a single programming exercise.
To the best of our knowledge, the earliest work in our research setting is a DKT-based

method proposed by Wang et al. (2017). Their method uses a recursive neural network to vectorize

the abstract syntax tree (AST) representation of student programs, and feeds them into a LSTM

89

Yang, J. C. et al. (Eds.) (2018). Proceedings of the 26th International Conference on Computers
in Education. Philippines: Asia-Pacific Society for Computers in Education

network. Although that approach seems promising, it is also complicated, unintuitive and
computationally expensive. Different from the way they used AST, we propose a simpler and yet

more efficient KT method based on the standard logistic regression model. Particularly, instead of

using AST directly, we introduced a metric called approaching index (AI) to quantify the closeness

of students’ current program to the best solution based on the idea of tree edit distance (TED). With
the AI metric, each student’s learning path, i.e., a series of programming solutions is represented by

an AI sequence. We approximated a student’s overall performance by the mean of all the values in

an AI sequence, namely AIScore. Finally, we used three features, i.e., correctness of student’s
program, number of attempts and AIScore to construct a logistic regression model for prediction. We

call our proposed method Process Knowledge Tracing (PKT), due to its strong connection to the

learning process data.

2. Knowledge Tracing

 One of the earliest knowledge tracing method is Bayesian Knowledge Tracing (BKT) that proposed

by (Corbett and Anderson, 1995). BKT assumes that at any given opportunity to demonstrate a skill,

e.g., student solves a programing problem, the knowledge state of a leaner is a binary variable, i.e.,
mastered or not, and the observed performance is a correct or incorrect response. The probability

that the student has mastered the skill can be updated based on our observation on student’s

performance in each practice opportunity. In classical BKT, only the first attempt for each
opportunity is taken into account, and it is assumed that each item corresponds to only a single skill

(or knowledge component). Technically, the BKT model can be characterized by four parameters as

follows, where the first two are learning parameters, while the last two are performance parameters.

 𝑃(𝐿𝑛): Probability the skill is mastered after 𝑛 opportunities of practices.

 𝑃(𝑇): Probability of student’s knowledge of a skill transitioning from not known to known

state after a practice opportunity

 𝑃(𝐺): Probability the student will guess correctly if the skill is not mastered.

 𝑃(𝑆): Probability the student will make a mistake if the skill is mastered.
 More precisely, BKT uses the following equations to infer student’s latent knowledge based
on his or her performance.

𝑃(𝐿𝑛|𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛) =
𝑃(𝐿𝑛−1) ∗ (1 − 𝑃(𝑆))

𝑃(𝐿𝑛−1) ∗ (1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑛−1)) ∗ 𝑃(𝐺)

𝑃(𝐿𝑛|𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛) =
𝑃(𝐿𝑛−1) ∗ 𝑃(𝑆)

𝑃(𝐿𝑛−1) ∗ 𝑃(𝑆) + (1 − 𝑃(𝐿𝑛−1)) ∗ (1 − 𝑃(𝐺))

𝑃(𝐿𝑛) = 𝑃(𝐿𝑛|𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑛) + (1 − 𝑃(𝐿𝑛|𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑛)) ∗ 𝑃(𝑇)
 Most importantly, from above equations, the probability of a student will practice correctly in an
upcoming practice is computed as

𝑃(𝐿𝑛+1) = 𝑃(𝐿𝑛)(1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑛)) ∗ 𝑃(𝐺)
 Knowledge tracing models applying logistic regression often define that the probability of a
correct response to a task is a mathematical function of student and skill parameters. These models

assume that the binary task response (correct/incorrect) follows a Bernoulli distribution. A notable

model in this kind is the Addictive Factors Model (AFM) (Cen, et al., 2007), which is a logistic
model that predicts the likelihood of the student being correct on the first try on a task. More

precisely, AFM computes

𝑃(𝑦𝑖𝑗 = 1|𝜎𝜃𝑖
2 , 𝛽, 𝛾) =

1

1 + 𝑒[−(𝜃𝑖+∑ 𝑞𝑗𝑘(𝛽𝑘+𝛾𝑘𝑇𝑖𝑘)
𝐾
𝑘=1)]

Where

 𝑦𝑖𝑗 is the response of student 𝑖 on task 𝑗.

 𝜃𝑖𝑁(0, 𝜎𝜃𝑖
2) is a random effect referring to the proficiency of student 𝑖.

 𝛽𝑘 is the coefficient for the learning rate of knowledge component 𝑘.

 𝑇𝑖𝑘 is the number of practice opportunities student 𝑖 has had on knowledge component 𝑘.

 𝑞𝑗𝑘 = 1 if task j uses skill k, 𝑞𝑗𝑘 = 0 otherwise.

90

 𝐾 is the total number of knowledge components in the Q-matrix.

 𝑞𝑗𝑘 = 1 if task j uses skill k, 𝑞𝑗𝑘 = 0 otherwise.

 𝐾 is the total number of knowledge component in the Q-matrix.

Figure 1. (a) A long short-term memory network for knowledge tracing. (b) The structure of LSTM cell

 Most recently, (Piech et al., 2015) proposed Deep Knowledge Tracing (DKT) that uses the

recurrent neural network to predict student’s responses. The “deep” in its name refers to the

recurrent structure of the neural network and the “depth” of information over time (Xiong et al.,
2016). In DKT, the input vectors are representations of whether the student answered a particular

question correctly or not at the previous time step, and the output vectors are representations of the

probability that a student will get the question correctly at the following time step. Figure 1 (a)

demonstrates an LSTM-based DTK model and its cell structure. Specifically, the LSTM update

operations are given by

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 +𝑊𝑥ℎℎ𝑡−1)
𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 +𝑊𝑓ℎℎ𝑡−1)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 +𝑊𝑜ℎℎ𝑡−1)
𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑥𝑡 +𝑊𝑔ℎℎ𝑡−1)

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝑔𝑡
ℎ𝑡 = 𝑜𝑡 ∙ 𝐶𝑡

Where the input 𝑥𝑡 in each time point is a one-hot encoding of the student’s response tuple 𝑥𝑡 =
𝑞𝑡 , 𝑎𝑡 , which represents whether the student answered a particular question 𝑞𝑡 correctly (𝑎𝑡 = 1)

or not (𝑎𝑡 = 0) at the time step 𝑡; ℎ𝑡−1 is the LSTM output from previous time step; 𝜎 and 𝑡𝑎𝑛ℎ

represent sigmoid and tanh non-linear transfer functions; 𝑊 are the model weight parameters that

can be learned when training the model. As shown in Figure 1 (b), 𝑦𝑡 can be inferred at each time

step by adding a sigmoid layer from the LSTM output ℎ𝑡. As we can see from the above review, all
the three popular knowledge tracing methods require students’ multiple historical response data to

predict future performance. However, rich historical response sequence is not existed, especially in

open-ended learning environments.

3. Process Knowledge Tracing

A typical setting for our research problem is students are given a programing task (without loss of

generality, we may assume there is only one best solution) that is allowed to be complete in multiple
attempts with some programming language. In each attempt, students can compile programs and

modify their programs according to the compiler’s feedbacks, i.e., whether their last attempts were

correct or not. Suppose we have access to their submitted programs, we can store each of them as an

abstract syntax tree (AST), a finite, labeled and ordered tree, whose internal nodes are labeled by
operators, and leaf nodes represent the operands of the node operators (Piech et al., 2012). The

problem solving process in the programming task can be considered as a series of edit actions made

to the source code. Note we can also think it of as a sequence of edits on an initial AST that transform
it into other ASTs. Generally, three types of edit actions, i.e., insertion, deletion and replacement of

tree nodes can change the state of an AST. If a student’s current solution is incorrect, he/she will

make one or more edits on his/her source code to solve the problem correctly. Moreover, if a

student’s current program is incorrect, there could be more than one pathways by which he/she can

91

reach the correct solution (or the goal state of AST). This means that there can be 𝑘 different edit

sequences 𝑆 = 𝑆1, 𝑆2, … , 𝑆𝑘 that can transform AST from 𝑇1 to 𝑇2 . We used tree edit distance

(TED) of AST, the shortest edit path from current solution to final solution, to evaluate every

intermediate solution given by each student. We call it approaching index (AI) and give its formal

definition as follow.

 [Definition 1] The approaching index of 𝑖-th student's 𝑗-th submission 𝐴𝐼𝑖𝑗 is defined as the TED

between the 𝑇𝑖𝑗 and the perfect solution 𝑇𝑝.

𝐴𝐼𝑖𝑗 = 𝑑(𝑇𝑖𝑗, 𝑇𝑝) = 𝑚𝑖𝑛⁡𝛾(𝑆𝑖𝑗→𝑝)

Where 𝛾(𝑆𝑖𝑗→𝑝) denotes the TED of all the possible edit sequences that can transform 𝑖-th

student's current submission 𝑇𝑖𝑗 to the perfect solution 𝑇𝑝.

 The minimization problem in Definition 1 is often treated as a dynamic programming

problem, which can be solved efficiently by the well-known Zhang&Shasha algorithm (Zhang &

Shasha, 1989). In this work, we applied Zhang&Shasha algorithm to compute the AI for each
submission.

 After the AI of each intermediate solution was computed, we obtained an AI sequence,

which represents how the solution quality changed over time. Based on the AI sequence, we further
constructed an overall measurement of the quality for each student. The metric is called AIScore,

which is defined formally as

𝐴𝐼𝑆𝑐𝑜𝑟𝑒𝑖 =
∑ 𝐴𝐼𝑖𝑗
𝑄𝑖
𝑗=1

𝑄𝑖

where 𝑄𝑖 denotes the number of attempts the 𝑖-th student made, i.e., the trajectory length. Consistent

with prior research, we used AIScore, number of attempts, and the correctness of the current solution

to predict student’s performance on the next task that involves the same knowledge component as
the previous one. Similar to AFM, a traditional logistic regression model is chosen in our current

study.

4. Dataset

The dataset used in this work to compute AIs was generated when students solved one of the classic

maze problems using a block-based programming language in the Hour of Code1. Instead of coding

text, students drag and drop visual blocks to compose their programs. There are twenty classic maze

problems that are aimed at teaching beginners fundamental programming constructs. In this paper,
we focused on No.18 maze problem (HOC18), because it is a relatively complicated task that

involves multiple programming constructs, such as repeat-until, if-else, and their nesting statements.

The actual HOC18 problem and its perfect solution are shown in Figure 2.
 This HOC18 dataset contains 79,553 unique code submissions and 83,955 trajectories,

made by 263,569 students. All code submissions are stored as AST files, which can be downloaded

from Hour of Code2. When preprocessing this dataset, we found 22,942 missing code submissions
(19,257 invalid trajectories). Therefore, the valid number of code submission and trajectories are

49,533 and 64,698, respectively. There are 187,616 students who completed task No.18 and also

attempted task No.19, both of which have the same knowledge component. Due to the missing code,

we focused only on 164,221 students with valid code submissions and trajectories. Among these
students, 150,875 of them solved the next problem HOC19 task successfully with a success rate

about 91.87%. The HOC19 task is a little more complicated maze problem that has the same

knowledge components with HOC18. When students completed HOC18 the system would jump to
HOC19 task automatically. Observing students' performance in HOC19 task can help us figure out

whether students learned knowledge from HOC18 task, especially for the students failed in HOC18.

5. Experiment results

1https://studio.code.org/courses
2https://code.org/research

92

In this section, we will compare the proposed KT method with the three most popular KT methods in
the literature, i.e., BKT, AFM and DKT. The running environment is a MacBook laptop (OS

10.12.3) with Intel Core i5 2.7GHz CPU and 8GB memory. We did all data prepossessing and

cleaning in Python 2.7, and used the Python package zss 3 (that implements Zhang&Shasha

algorithm) to compute TEDs. The Python version of AFM implemented by (MacLellan et al., 2015)
and DKT by (Khajah et al., 2016) were used in our experiment. To make a fair comparison, all the

four methods were run in a 10 fold cross-validation manner on the HOC18 dataset. Three widely

used metrics, i.e., accuracy, AUC and F1, were used for performance evaluation.

Figure 2: The HOC 18 programming task (left) and it’s best solution (right)

Figure 3: Boxplot of the prediction performance of the four methods

Figure 4: comparison between PKT and the best method among BKT, AFM and DKT on each indicator.

 Figure 3 shows the box plot of the performance of the four models. First, we observe that our

proposed PKT method achieves the highest mean value and the smallest deviation on all the three

metrics. We also notice that AFM performs well on Accuracy and F1 index. Second, we see that the

two logistic models (AFM and PKD) outperform the two sequence-based models (BKT and DKT)
on Accuracy and F1 index. This result reveals potential limitation of the sequence-based approach:

its predictive power can be extremely restricted when the lengths of input sequences are short. In

fact, the presence of short sequences is common for many basic programming tasks that are designed
to educate novices (e.g., kids) computational thinking skills. Third, the three simple models, BKT,

AFM and PKT were found to have superior Accuracy and F1 score to DKT. This may be because

DKT overfited our smaller amount data with its sheer number (about 16,400) of parameters.

Moreover, the three simpler methods have just a few three parameters, saving significant amount of
time in the model training. This finding also reminds us that if we do not have enough data, more

sophisticated approach like DKT maybe not a good choice. Figure 4 compares PKT with the best

method among the other three methods on each metrics. As depicted in the plot, PKT provides the
higher average value and smaller deviation on all three performance measures. The ANOVA test

3https://github.com/timtadh/zhang-shasha

93

results, in the lower right corner of each figure, also shows that PKT performs significantly better
than the remaining methods on all three metrics.

6. Conclusion

In this paper, we proposed a new knowledge tracing method that makes use of the data hidden in the

intermediate solutions given by students in solving a single programming problem to estimate their
knowledge mastery states. Compared with existing knowledge tracing methods, deeper process data

was used to construct a logistic model. We compared our PKT method with three popular methods,

e.g., BKT, AFM and DKT, on a large-scale dataset collected in a classic block-based programming
task. The experimental results not only demonstrated the advantage of PKT over other methods, but

also confirmed that the approaching index as we proposed is an effective and significant feature,

which is unfortunately undiscovered in prior work on knowledge tracing.
 Extending this model encompasses several potential directions to pursue. A technical

challenge we encountered in developing current approach is how to compute the tree edit distances

on AST both efficiently and accurately. In the future, we could explore using more efficient tree edit

distance algorithms to compute the approaching index. Another interesting direction relates to the
quest of how to extend the proposed model to open-end programming tasks (there can be more than

one best solution). Lastly, we may also explore the possibility to directly feed the AI sequences into

a LSTM model to do knowledge tracing.

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China under Grant No.

61503340, Scientific Research Fund of Zhejiang University of Technology under No. Z20160133.

References

Cen, H., Koedinger, K. R., & Junker, B. (2007). Is Over Practice Necessary?-Improving Learning Efficiency

with the Cognitive Tutor through Educational Data Mining. Frontiers in artificial intelligence and

applications, 158, 511.

Corbett, A. T.; Anderson, J. R. (1995). "Knowledge tracing: Modeling the acquisition of procedural

knowledge". User Modeling and User-Adapted Interaction. 4 (4): 253–278.

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., Stamper, J. (2017). A Framework for Using

Hypothesis-Driven Approaches to Support Data-Driven Learning Analytics in Measuring

Computational Thinking in Block-Based Programming Environments A Framework for Using
Hypothesis-Driven Approaches to Support Data-Driven Learning Ana. ACM Transactions on

Computing Education, 17(3), 1–25.

Khajah, M., Lindsey, R. V., & Mozer, M. C. (2016). How deep is knowledge tracing? In Proceedings of the

9th International Conference on Educational Data Mining.

MacLellan, C. J., Liu, R., & Koedinger, K. R. (2015). Accounting for Slipping and Other False Negatives in

Logistic Models of Student Learning. In Proceedings of the 8th International Conference on Educational

Data Mining.

Mitchel, R., John, M., Andres, M. H., & Natalie, R. (2009). Scratch: Programming for All. Communications of

the ACM, 52(11).

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep

knowledge tracing. In Advances in Neural Information Processing Systems (pp. 505–513).
Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012). Modeling How Students Learn to

Program. In Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp.

153–160).Wang, L., Sy, A., Liu, L., & Piech, C. (2017). Deep Knowledge Tracing On Programming

Exercises. In Proceedings of the 4th ACM Conference on Learning@ Scale (pp. 201–204).

Xiong, X., Zhao, S., Van Inwegen, E., & Beck, J. (2016). Going Deeper with Deep Knowledge Tracing.

In Proceeding of 2016 International Conference on Educational Data Mining (pp. 545–550).

Zhang, K., & Shasha, D. (1989). Simple Fast Algorithms for the Editing Distance between Trees and Related

Problems. SIAM Journal on Computing, 18(6), 1245–1262.

94

