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Abstract: Knowledge tracing is a core technology in many intelligent learning systems. In 
this paper, we propose a novel knowledge tracing method that predicts learner’s knowledge 

state within a single programming exercise. Given a programming task, a student’s 

intermediate solution is represented by an abstract syntax tree and evaluated by computing 

its tree edit distance to the best solution. With the measure of solution quality, the learning 

trajectory of each student can be encoded as a real-valued sequence. Using the mean value 

of the sequence as a primary feature, we developed a logistic regression model to predict 

students’ knowledge state. We compared our method with three popular models on a 

large-scale dataset collected from a classic block-based programming task. The 

experimental results suggest that the proposed method that captures features derived from 

student's problem-solving processes can significantly improve the prediction performance. 

Keywords: Bayesian knowledge tracing, deep knowledge tracing, additive factor model, 

block-based programming 

1. Introduction

Programming exercise for students is more than just coding. Indeed, it is a cognitive process that 

requires rather sophisticated computational problem-solving skills regarding concepts, practices and 

perspective (Mitchel et al., 2009). The assessment of such computational skills has important 
pedagogical value in computational thinking education. Most research on measuring computational 

skills in programming tasks have relied on the final code students completed checking the use of 

programming constructs such as loops, conditionals and logic. This approach is incomplete as it 

ignores the learning paths that can be substantially different among individuals and thus better 
reflect students’ mastery of knowledge and skills than the finished products (Grover et al., 2017).  

Knowledge tracing (KT) is a task that estimates students’ proficiency of the required 

knowledge components using data collected from their problem-solving processes. Predicting 
students’ knowledge states allows educators to recommend suitable learning resources in students’ 

needs. The most popular knowledge tracing method in literature is the Bayesian Knowledge Tracing 

(BKT). It models a student’s knowledge by a latent variable in a hidden Markov chain and updates 
its state by observing the correctness of each attempt in which he or she applied the knowledge and 

skills in answering the question (Corbett and Anderson, 1995). Another important KT method is 

called Additive Factor Model (AFM), which estimates the probability of a student being correct on 

the first attempt using a logistic model (Cen, et al., 2007). Most recently, Piech et al., (2015) 
proposed a method namely Deep Knowledge Tracing (DKT) that utilized long short-term memory 

(LSTM) model to predict students’ knowledge state. All these KT techniques require students to 

complete multiple exercises and use information like their performance on knowledge component or 
the number of attempts to build prediction models. Inspired by this fundamental observation, in this 

paper, we seek to develop a more comprehensive and efficient solution to estimate knowledge state 

using deeper process data within a single programming exercise. 
To the best of our knowledge, the earliest work in our research setting is a DKT-based 

method proposed by Wang et al. (2017). Their method uses a recursive neural network to vectorize 

the abstract syntax tree (AST) representation of student programs, and feeds them into a LSTM 
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network. Although that approach seems promising, it is also complicated, unintuitive and 
computationally expensive. Different from the way they used AST, we propose a simpler and yet 

more efficient KT method based on the standard logistic regression model. Particularly, instead of 

using AST directly, we introduced a metric called approaching index (AI) to quantify the closeness 

of students’ current program to the best solution based on the idea of tree edit distance (TED). With 
the AI metric, each student’s learning path, i.e., a series of programming solutions is represented by 

an AI sequence. We approximated a student’s overall performance by the mean of all the values in 

an AI sequence, namely AIScore. Finally, we used three features, i.e., correctness of student’s 
program, number of attempts and AIScore to construct a logistic regression model for prediction. We 

call our proposed method Process Knowledge Tracing (PKT), due to its strong connection to the 

learning process data. 
 

2. Knowledge Tracing 
    

 One of the earliest knowledge tracing method is Bayesian Knowledge Tracing (BKT) that proposed 

by (Corbett and Anderson, 1995). BKT assumes that at any given opportunity to demonstrate a skill, 

e.g., student solves a programing problem, the knowledge state of a leaner is a binary variable, i.e., 
mastered or not, and the observed performance is a correct or incorrect response. The probability 

that the student has mastered the skill can be updated based on our observation on student’s 

performance in each practice opportunity. In classical BKT, only the first attempt for each 
opportunity is taken into account, and it is assumed that each item corresponds to only a single skill 

(or knowledge component). Technically, the BKT model can be characterized by four parameters as 

follows, where the first two are learning parameters, while the last two are performance parameters. 

 𝑃(𝐿𝑛): Probability the skill is mastered after 𝑛 opportunities of practices. 

 𝑃(𝑇): Probability of student’s knowledge of a skill transitioning from not known to known 

state after a practice opportunity 

 𝑃(𝐺): Probability the student will guess correctly if the skill is not mastered. 

 𝑃(𝑆): Probability the student will make a mistake if the skill is mastered. 
 More precisely, BKT uses the following equations to infer student’s latent knowledge based 
on his or her performance. 

𝑃(𝐿𝑛|𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛) =
𝑃(𝐿𝑛−1) ∗ (1 − 𝑃(𝑆))

𝑃(𝐿𝑛−1) ∗ (1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑛−1)) ∗ 𝑃(𝐺)
 

𝑃(𝐿𝑛|𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛) =
𝑃(𝐿𝑛−1) ∗ 𝑃(𝑆)

𝑃(𝐿𝑛−1) ∗ 𝑃(𝑆) + (1 − 𝑃(𝐿𝑛−1)) ∗ (1 − 𝑃(𝐺))
 

𝑃(𝐿𝑛) = 𝑃(𝐿𝑛|𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑛) + (1 − 𝑃(𝐿𝑛|𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑛)) ∗ 𝑃(𝑇) 
    Most importantly, from above equations, the probability of a student will practice correctly in an 
upcoming practice is computed as 

𝑃(𝐿𝑛+1) = 𝑃(𝐿𝑛)(1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑛)) ∗ 𝑃(𝐺) 
    Knowledge tracing models applying logistic regression often define that the probability of a 
correct response to a task is a mathematical function of student and skill parameters. These models 

assume that the binary task response (correct/incorrect) follows a Bernoulli distribution. A notable 

model in this kind is the Addictive Factors Model (AFM) (Cen, et al., 2007), which is a logistic 
model that predicts the likelihood of the student being correct on the first try on a task. More 

precisely, AFM computes  

𝑃(𝑦𝑖𝑗 = 1|𝜎𝜃𝑖
2 , 𝛽, 𝛾) =

1

1 + 𝑒[−(𝜃𝑖+∑ 𝑞𝑗𝑘(𝛽𝑘+𝛾𝑘𝑇𝑖𝑘)
𝐾
𝑘=1 )]

 

Where 

 𝑦𝑖𝑗 is the response of student 𝑖 on task 𝑗. 

 𝜃𝑖𝑁(0, 𝜎𝜃𝑖
2 ) is a random effect referring to the proficiency of student 𝑖. 

 𝛽𝑘 is the coefficient for the learning rate of knowledge component 𝑘. 

 𝑇𝑖𝑘 is the number of practice opportunities student 𝑖 has had on knowledge component 𝑘. 

 𝑞𝑗𝑘 = 1 if task j uses skill k, 𝑞𝑗𝑘 = 0 otherwise. 
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 𝐾 is the total number of knowledge components in the Q-matrix. 

 𝑞𝑗𝑘 = 1 if task j uses skill k, 𝑞𝑗𝑘 = 0 otherwise. 

 𝐾 is the total number of knowledge component in the Q-matrix. 

 
Figure 1. (a) A long short-term memory network for knowledge tracing. (b) The structure of LSTM cell 

    Most recently, (Piech et al., 2015) proposed Deep Knowledge Tracing (DKT) that uses the 

recurrent neural network to predict student’s responses. The “deep” in its name refers to the 

recurrent structure of the neural network and the “depth” of information over time (Xiong et al., 
2016). In DKT, the input vectors are representations of whether the student answered a particular 

question correctly or not at the previous time step, and the output vectors are representations of the 

probability that a student will get the question correctly at the following time step. Figure 1 (a) 

demonstrates an LSTM-based DTK model and its cell structure. Specifically, the LSTM update 

operations are given by 
 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 +𝑊𝑥ℎℎ𝑡−1) 
𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 +𝑊𝑓ℎℎ𝑡−1) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 +𝑊𝑜ℎℎ𝑡−1) 
𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑥𝑡 +𝑊𝑔ℎℎ𝑡−1) 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝑔𝑡 
ℎ𝑡 = 𝑜𝑡 ∙ 𝐶𝑡 

Where the input 𝑥𝑡 in each time point is a one-hot encoding of the student’s response tuple 𝑥𝑡 =
𝑞𝑡 , 𝑎𝑡  , which represents whether the student answered a particular question 𝑞𝑡  correctly (𝑎𝑡 = 1) 

or not (𝑎𝑡 = 0) at the time step 𝑡; ℎ𝑡−1 is the LSTM output from previous time step; 𝜎 and 𝑡𝑎𝑛ℎ 

represent sigmoid and tanh non-linear transfer functions; 𝑊 are the model weight parameters that 

can be learned when training the model. As shown in Figure 1 (b), 𝑦𝑡  can be inferred at each time 

step by adding a sigmoid layer from the LSTM output ℎ𝑡. As we can see from the above review, all 
the three popular knowledge tracing methods require students’ multiple historical response data to 

predict future performance. However, rich historical response sequence is not existed, especially in 

open-ended learning environments.  

 

3. Process Knowledge Tracing 
   

A typical setting for our research problem is students are given a programing task (without loss of 

generality, we may assume there is only one best solution) that is allowed to be complete in multiple 
attempts with some programming language. In each attempt, students can compile programs and 

modify their programs according to the compiler’s feedbacks, i.e., whether their last attempts were 

correct or not. Suppose we have access to their submitted programs, we can store each of them as an 

abstract syntax tree (AST), a finite, labeled and ordered tree, whose internal nodes are labeled by 
operators, and leaf nodes represent the operands of the node operators (Piech et al., 2012). The 

problem solving process in the programming task can be considered as a series of edit actions made 

to the source code. Note we can also think it of as a sequence of edits on an initial AST that transform 
it into other ASTs. Generally, three types of edit actions, i.e., insertion, deletion and replacement of 

tree nodes can change the state of an AST. If a student’s current solution is incorrect, he/she will 

make one or more edits on his/her source code to solve the problem correctly. Moreover, if a 

student’s current program is incorrect, there could be more than one pathways by which he/she can 
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reach the correct solution (or the goal state of AST). This means that there can be 𝑘 different edit 

sequences 𝑆 = 𝑆1, 𝑆2, … , 𝑆𝑘  that can transform AST from 𝑇1  to 𝑇2 . We used tree edit distance 

(TED) of AST, the shortest edit path from current solution to final solution, to evaluate every 

intermediate solution given by each student. We call it approaching index (AI) and give its formal 

definition as follow. 

 [Definition 1] The approaching index of 𝑖-th student's 𝑗-th submission 𝐴𝐼𝑖𝑗  is defined as the TED 

between the 𝑇𝑖𝑗  and the perfect solution 𝑇𝑝. 

𝐴𝐼𝑖𝑗 = 𝑑(𝑇𝑖𝑗, 𝑇𝑝) = 𝑚𝑖𝑛⁡𝛾(𝑆𝑖𝑗→𝑝) 

Where 𝛾(𝑆𝑖𝑗→𝑝) denotes the TED of all the possible edit sequences that can transform 𝑖-th 

student's current submission 𝑇𝑖𝑗  to the perfect solution 𝑇𝑝. 

 The minimization problem in Definition 1 is often treated as a dynamic programming 

problem, which can be solved efficiently by the well-known Zhang&Shasha algorithm (Zhang & 

Shasha, 1989). In this work, we applied Zhang&Shasha algorithm to compute the AI for each 
submission. 

 After the AI of each intermediate solution was computed, we obtained an AI sequence, 

which represents how the solution quality changed over time. Based on the AI sequence, we further 
constructed an overall measurement of the quality for each student. The metric is called AIScore, 

which is defined formally as 

𝐴𝐼𝑆𝑐𝑜𝑟𝑒𝑖 =
∑ 𝐴𝐼𝑖𝑗
𝑄𝑖
𝑗=1

𝑄𝑖
 

where 𝑄𝑖 denotes the number of attempts the 𝑖-th student made, i.e., the trajectory length. Consistent 

with prior research, we used AIScore, number of attempts, and the correctness of the current solution 

to predict student’s performance on the next task that involves the same knowledge component as 
the previous one. Similar to AFM, a traditional logistic regression model is chosen in our current 

study. 

 

4. Dataset 
   
The dataset used in this work to compute AIs was generated when students solved one of the classic 

maze problems using a block-based programming language in the Hour of Code1. Instead of coding 

text, students drag and drop visual blocks to compose their programs. There are twenty classic maze 

problems that are aimed at teaching beginners fundamental programming constructs. In this paper, 
we focused on No.18 maze problem (HOC18), because it is a relatively complicated task that 

involves multiple programming constructs, such as repeat-until, if-else, and their nesting statements. 

The actual HOC18 problem and its perfect solution are shown in Figure 2.  
 This HOC18 dataset contains 79,553 unique code submissions and 83,955 trajectories, 

made by 263,569 students. All code submissions are stored as AST files, which can be downloaded 

from Hour of Code2. When preprocessing this dataset, we found 22,942 missing code submissions 
(19,257 invalid trajectories). Therefore, the valid number of code submission and trajectories are 

49,533 and 64,698, respectively. There are 187,616 students who completed task No.18 and also 

attempted task No.19, both of which have the same knowledge component. Due to the missing code, 

we focused only on 164,221 students with valid code submissions and trajectories. Among these 
students, 150,875 of them solved the next problem HOC19 task successfully with a success rate 

about 91.87%. The HOC19 task is a little more complicated maze problem that has the same 

knowledge components with HOC18. When students completed HOC18 the system would jump to 
HOC19 task automatically. Observing students' performance in HOC19 task can help us figure out 

whether students learned knowledge from HOC18 task, especially for the students failed in HOC18.  

 

5. Experiment results 
   

                                                
1https://studio.code.org/courses 
2https://code.org/research 
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In this section, we will compare the proposed KT method with the three most popular KT methods in 
the literature, i.e., BKT, AFM and DKT. The running environment is a MacBook laptop (OS 

10.12.3) with Intel Core i5 2.7GHz CPU and 8GB memory. We did all data prepossessing and 

cleaning in Python 2.7, and used the Python package zss 3  (that implements Zhang&Shasha 

algorithm) to compute TEDs. The Python version of AFM implemented by (MacLellan et al., 2015) 
and DKT by (Khajah et al., 2016) were used in our experiment. To make a fair comparison, all the 

four methods were run in a 10 fold cross-validation manner on the HOC18 dataset. Three widely 

used metrics, i.e., accuracy, AUC and F1, were used for performance evaluation.  

 

 
Figure 2: The HOC 18 programming task (left) and it’s best solution (right) 

 

 
Figure 3: Boxplot of the prediction performance of the four methods 

 
Figure 4: comparison between PKT and the best method among BKT, AFM and DKT on each indicator. 

 
 Figure 3 shows the box plot of the performance of the four models. First, we observe that our 

proposed PKT method achieves the highest mean value and the smallest deviation on all the three 

metrics. We also notice that AFM performs well on Accuracy and F1 index. Second, we see that the 

two logistic models (AFM and PKD) outperform the two sequence-based models (BKT and DKT) 
on Accuracy and F1 index. This result reveals potential limitation of the sequence-based approach: 

its predictive power can be extremely restricted when the lengths of input sequences are short. In 

fact, the presence of short sequences is common for many basic programming tasks that are designed 
to educate novices (e.g., kids) computational thinking skills. Third, the three simple models, BKT, 

AFM and PKT were found to have superior Accuracy and F1 score to DKT. This may be because 

DKT overfited our smaller amount data with its sheer number (about 16,400) of parameters. 

Moreover, the three simpler methods have just a few three parameters, saving significant amount of 
time in the model training. This finding also reminds us that if we do not have enough data, more 

sophisticated approach like DKT maybe not a good choice. Figure 4 compares PKT with the best 

method among the other three methods on each metrics. As depicted in the plot, PKT provides the 
higher average value and smaller deviation on all three performance measures. The ANOVA test 

                                                
3https://github.com/timtadh/zhang-shasha 
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results, in the lower right corner of each figure, also shows that PKT performs significantly better 
than the remaining methods on all three metrics. 

 

6. Conclusion 

   
In this paper, we proposed a new knowledge tracing method that makes use of the data hidden in the 

intermediate solutions given by students in solving a single programming problem to estimate their 
knowledge mastery states. Compared with existing knowledge tracing methods, deeper process data 

was used to construct a logistic model. We compared our PKT method with three popular methods, 

e.g., BKT, AFM and DKT, on a large-scale dataset collected in a classic block-based programming 
task. The experimental results not only demonstrated the advantage of PKT over other methods, but 

also confirmed that the approaching index as we proposed is an effective and significant feature, 

which is unfortunately undiscovered in prior work on knowledge tracing. 
 Extending this model encompasses several potential directions to pursue. A technical 

challenge we encountered in developing current approach is how to compute the tree edit distances 

on AST both efficiently and accurately. In the future, we could explore using more efficient tree edit 

distance algorithms to compute the approaching index. Another interesting direction relates to the 
quest of how to extend the proposed model to open-end programming tasks (there can be more than 

one best solution). Lastly, we may also explore the possibility to directly feed the AI sequences into 

a LSTM model to do knowledge tracing. 
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