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Abstract: In this paper, we investigate the convergence and leader-follower patterns of pairs 

of novice programmers as they traced and debugged fragments of code and the impact of 

these patterns against the success of programming pairs. We performed a dual eye tracking 

experiment, recorded their fixations and computed for the recurrence rate and the diagonal 

recurrence profile using Cross-Recurrence Quantification Analysis (CRQA). Results 

showed that programming pairs who chat and work on the same program together and 

converge more often significantly perform better than those who do not. The highly 

proficient but poorly acquainted pairs, despite of poor convergence, still perform the best. 

On the other hand, low proficiency pairs that are highly acquainted have the weakest 

performance even if they converge very well. Findings also revealed that there is a 

significant difference as to who is leading who. The more successful participants within 

pairs are leading the less successful participants majority of the time. This study is important 

because it provides information about the dynamics that may likely occur in a pair 

programming setup.  
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1. Introduction

Pair programming is a collaborative work arrangement where two programmers execute different 

programming activities together. It may be co-located, i.e., programmers share a single screen or 

may also occur remotely or in spatially distributed mode in which programmers look at the same 

code but on different screens (Baheti, 2002). The most common representation of the dynamics of 

pair programming is that of a “driver” and “navigator” roles that describe the division of labor. The 

driver is the one that does the typing or writes a design, while the navigator is the one who performs 

the strategic planning and monitoring (Williams & Kessler, 2000). 

In pair programming, it is possible for individuals within pairs to disengage from the 

partnership (Plonka et al., 2012). Some extent is acceptable to speed up problem solving. However, 

there are episodes of disengagement where students withdraw from their pair programming sessions 

because they are no longer able to follow their partner’s work or contribute to the task, hence losing 

the expected benefits of pairing. The fluctuations between engagement and disengagement suggest 

that collaboration is not stable but is rather a series of convergent and divergent phases (Sharma et 

al., 2012). The pair is said to be converging when the collaborating partners jointly work to 

understand the code. In this phase, the participants in a pair are focused on the same part of the 

program in what is considered a “stable” manner. On the other hand, a divergent episode of 

interaction is when the participants are looking at different parts of the program as they try to build 

their own understanding. During convergent episodes, the pair is said to be “looking together”. 

The “togetherness” of the participants, such as during a convergent episode, is often 

measured using gaze coupling, which refers to moments when the participants are looking at the 

same target (Richardson & Dale, 2005). The degree of gaze coupling is tantamount to the degree of 

joint attention, defined as “attending to something together with someone and being aware the both 

are attending” (Schilbach, 2015). Both entail following the direction of another person’s gaze, which 

is seen as an essential step to establishing strong patterns of social interaction (Moore & Dunham, 

2014).  Prior findings suggest that gaze coupling reflects tightness of collaboration (Pietinen et al., 
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2008).  This can be visualized using cross-recurrence plots and quantified in terms of recurrence rate 

through Cross-Recurrence Quantification Analysis (CRQA) (Marwan et al., 2007). 

The “driver” and “navigator” roles in pair programming can be analyzed using the concept 

of gaze direction, where persons involved in a mutual interaction may hold the roles as either the 

“leader” or “follower” (Schneider & Pea, 2013). For joint attention to occur there must be a leader 

directing someone else’s gaze towards a target and a follower going along with the gaze cue provided. 

These profiles of collaboration are interesting because they can tell us about the dynamics of the 

pair. Knowing who leads and follows gives us an idea on what is causing the pairs to collaborate 

and what instigated their convergence.  For instance, in a pair programming eye tracking study 

conducted by Villamor and Rodrigo (2017a), it was found that the one that usually gives the gaze 

cue, and hence the leader, are the low prior knowledge participants because they are typically the 

first one to ask help from a more skilled partner. 

In recent years, dual eye tracking in the context of pair programming has been explored to 

study joint attention in collaborative learning situations (Pietinen et al., 2008; Schneider et al., 2013). 

Two eye trackers, for instance, can be synchronized for studying the gaze of two individuals 

collaborating to solve a problem and for understanding how gaze and speech are coupled (Pietinen 

et al., 2008). In a study that highlights leader-follower behaviors, “joint attention” is defined as a 

measure of how many times both participants looked at the same target on the screen where each 

member within a pair is identified as “leader” and “follower” (Schneider & Pea, 2013).  Knowing 

who leads and follows gives us an idea on what is causing the pairs to collaborate and what instigated 

their convergence.  For instance, in a pair programming eye tracking study by Villamor and Rodrigo 

(2017a), it was found that the one that usually gives the gaze cue, and hence the leader, are the low 

prior knowledge participants because they are typically the first one to ask help from a more skilled 

partner. On the dynamics of convergence, Sharma et al. (2012) investigated the impact of convergent 

and divergent phases of interaction on the program comprehension strategies of pairs with different 

levels of understanding where they found that moments of convergence are accompanied by more 

systematic execution of the code and less transitions among identifiers and expressions.  
The goal of this paper is to investigate pair programming profiles and dynamics, particularly 

convergence and leader-follower patterns, and determine how these dynamics affect the success of 

the pairs measured in terms of debugging scores. This paper attempts to answer the following: 

1. Is there a significant difference on the recurrence rate and debugging scores between 

successful and unsuccessful programming pairs based on their convergence patterns? 

2. Who converge the most and perform the best in terms of proficiency, gender, and 

acquaintanceship? How does the frequency of convergence affect the debugging scores of 

the pairs based on these categories? 

3. Between a more successful and a less successful participant within a pair, who is the leader 

and the follower majority of the time? Is there a significant difference as to who is leading 

who? 

4. Is there a significant difference on the recurrence rate and debugging scores between 

successful and unsuccessful programming pairs based on leader-follower patterns? How do 

the leader-follower patterns affect the debugging scores?  
This study endeavors to contribute to our main goal of understanding better the different 

dynamics that may take place during pair programming sessions in our attempt to determine the 

potential indicators that may impact the success in pair programming. 

  

 

2. Methods 
 

2.1 Participants and Structure of the Study 
 

The study was conducted in 6 universities in the Philippines recruiting 2nd to 4th year level college 

students who had already taken their college-level fundamental programming course. Eighty-four 

(84) participants, 56 males and 28 females, were randomly paired regardless of gender, proficiency 

level, and acquaintanceship level resulting in a total of 42 pairs. The task was to locate and mark the 

errors in the 12 erroneous programs. A chat program was provided to encourage the pairs to 
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collaborate. We used chat to ensure that the pairs will not be tempted to look away from their screens. 

The pairs were co-located but they were spaced far enough to ensure that all communications with 

their partner was via chat only. An artificial limit (e.g., 60 minutes) was set for the debugging tasks 

to copy a programming laboratory setting where students are given programming exercises to solve 

or debug within a given time limit.  

The result of the program comprehension test was used to divide the participants into high 

and low proficiency pairs. Pairs whose average score were equal to or above the mean test score 

were categorized as highly proficient pairs and the rest were tagged as low proficient.  The result of 

the post-test pair evaluation given after the experiment was used to assess the degree of 

acquaintanceship of the pairs whether they were highly or poorly acquainted. The questionnaire 

contained items about how well the pairs knew each other, how well they thought they collaborated, 

and how they felt about their partner.  

We recorded a total of 376 cases, where a case is defined as one of the 12 programs under 

each pair. A pair is successful if the average debugging score for the 12 programs is greater than or 

equal to the mean score; otherwise, the pair is unsuccessful. There were 19 successful pairs and 22 

unsuccessful pairs. A case is successful when both participants within a pair are able to mark half of 

the bugs in a program. Otherwise, if only one participant marks at least 50% of the bugs or both fail 

to spot the bugs, then the case is unsuccessful. There were 196 successful cases and 180 unsuccessful 

cases. The debugging scores were converted to percentage equivalents. To test for statistically 

significant differences, t-test for independent sample means and ANOVA were performed. Pearson’s 

correlation was carried out to determine the relationships between the convergence and leader-

follower patterns vis-a-vis the pairs’ debugging scores. For a detailed description of the structure of 

the study, data cleaning, and preparation for analysis, see Villamor and Rodrigo (2018). 

 

2.2 Cross-Recurrence Plot and Diagonal Recurrence Profile 
 

A cross-recurrence plot (CRP) is an N x N matrix, which represents a time coupling between two 

time series. The horizontal axis represents time for the first collaborator (C1) and the vertical axis 

represents time for the second collaborator (C2). Recurrence occurs when two fixations from 

different sequences land within a given threshold of each other using some distance metric. If 

fixations i and j are recurrent, they are represented as a black point (pixel) in the plot (see Figure 

1.a). Hence, a point in the plot indicates that the fixations from two different collaborators at their 

respective times are recurrent. If two collaborators uninterruptedly looked at two different spots on 

the screen for the entire interaction, the resulting CRP would be completely blank (white space in 

Figure 1.a). If the two collaborators looked at the same spot on the screen continuously, the plot 

would show a dark line parallel to the main diagonal. Each diagonal on a CRP parallel to the main 

diagonal corresponds to a particular alignment between the collaborators’ eye movement data with 

a particular lag time between them. Points exactly on the main diagonal of the plot correspond to 

synchronous recurrence, such as, collaborators look at the same target at exactly the same time. 

 

 
 

(a) 
 

(b) 
Figure 1. (a) Cross-Recurrence Plot and (b) Diagonal-Recurrence Profile Visualization. 

 

A number of measures can be extracted from a CRP. These include recurrence rate (RR), 

determinism (DET), average diagonal length (L), longest diagonal length (LMAX), entropy (ENTR), 

laminarity (LAM), and trapping time (TT). Cross-Recurrence Rate (RR) represents the “raw” amount 

125



of similarities between the trajectories of the two systems, which refers to the degree to which they 

tend to visit similar state. In eye tracking, this represents the percentage of cross-recurrent fixations 

that is indicative of the degree of gaze coupling. The definitions of the other measures can be found 

in (Marwan et al., 2007). This study limits its analysis to include only RR as prior literature have 

used this measure to account for the “togetherness” of two people in terms of where they are looking.  

Hence, we will also use RR to assess the degree of gaze coupling of the programming pairs when 

they converge.  

Analysis on leader-follower trends is focused on the diagonal recurrence profile 

(DiagProfile), which is the diagonal on the CRP that runs from the origin up to the topmost right 

portion. The DiagProfile can be used to analyze which delay or lag maximizes recurrence and to 

observe the direction of the coordination (Fusaroli et al., 2014). When the recurrence rate is largely 

distributed above or below the main diagonal of the plot, it has direct bearing on the 

leading/following patterns of the systems that produced those time series. Given two collaborators 

C1 and C2, points above the diagonal correspond to fixations of C2 that happen after C1 has fixated 

the element. Points below the diagonal correspond to C2’s gaze leading C1’s. Asymmetries above 

and below the diagonal line could therefore be indicative of leading and following behaviors. 

Figure 1.b shows a visualization of the diagonal recurrence profile of the CRP on the left, 

which was one of the CRPs generated in this experiment. The DiagProfile visualization was done 

in R using the function drpdfromts from the crqa package of Coco and Dale (2014). This function 

returned a recurrence profile with the length equal to the number of lags considered, the maximal 

recurrence observed between the two fixation sequences, and the lag at which it occurred. In this 

study, we focused only on the lag, which informs how much time one participant is ahead of the 

other. The window size or the argument ‘ws’ of this function was set equal to the length of the 

fixation sequence and gave a span of +/−3 seconds where each time-point represented a fixation of 

33 msec. long. Figure 1.b indicates that C1 is ahead of C2 by 1.75 seconds.  If C2 is leading C1, the 

lag becomes negative. If the pair is perfectly aligned, i.e., both participants look at the same spot at 

the same time, the lag is zero.  

 

2.3 A Leader-Follower Example 
 

Richardson and Dale (2005), in their collaborative eye tracking study, investigated how quickly a 

test participant fixates on a target after it is mentioned by the partner. This measure indicates how 

well the listener understood what the partner said. Fixating on a target after it has been referenced 

by a partner is also another way to tell whether a leader-follower pattern occurs. To illustrate an 

example how a leader-follower scenario unfolds in this pair programming eye tracking study, 

snapshots of the program used as a stimulus showing actual communication between collaborating 

partners and their fixation points are shown in Figure 2. 

From the snapshots, C1 is considered the “leader” in this scenario while C2 is the “follower”. 

After C1 had fixated long enough on a specific location of the program, C1 initiated a chat with C2 

and told C2 to look at lines 9 and 10. C2 then responded to confirm if C1 was referring to the Rock-

Scissor-Paper (RPS) program, looked at lines 9 and 10, and asked C1 about what seemed to be the 

problem. What is the effect after both collaborators have looked at the same location in the program? 

Since the fixation points of C1 and C2 were positioned at about the same location when they were 

looking at the program, this made their fixations recurrent based on a set threshold. In Figure 1.a, 

part of the pixelated regions enclosed in a red circle on the CRP informs us that the fixation points 

of the two collaborators with respect to the times these fixations occurred are recurrent. Hence, the 

more leader-follower dynamics occur, the more cross-recurrence fixations will there be causing an 

increase in the recurrence rate and an increased recurrence rate is an indication of better collaboration.  

 

 

3. Results and Discussion 
 

3.1 Convergence Patterns 
 

In this study, we define convergence in three ways: 1) when the participants in a pair are working 

on the same program together, either deliberately or not; 2) when they communicated via chat to 
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talk about the task even if they are not looking at the same program (e.g., C1 might be working 

already on program 6, while C2 is still on program 5 but they are talking about the errors in program 

5); and 3) when they are communicating and working on the same program together, hence, there is 

mutual awareness. 

 

 
First Scenario: 

 

Collaborator 1 (C1) looked at a 

specific target on the program for 

about 3.4 seconds. 

 

 

Second Scenario: 

 

C1 opened the chat program and 

told his partner to look at lines 9 

and 10, specifically the variable 

“data”. 

 

 
Third Scenario: 

 

Collaborator 2 (C2) responded to 

C1 and then looked at lines 9 and 

10, as mentioned by C1. 

Figure 2. An Illustration of a Leader-Follower Scenario. 

 

To verify whether the individuals within the pair are working on the same program together, 

a plot was generated for each pair that showed the scan patterns of the pairs using a line graph. Figure 

3 shows an example of these plots. The plot illustrates the fixation x- and y-coordinates of the two 

collaborators. The blue and green lines are the fixation x- and y-coordinates of C1, while the red and 

aqua lines are the fixation x- and y-coordinates of C2. The x-axis of the plot represents the combined 

timeline of the two collaborators, and the y-axis represents the range of possible values of the fixation 

x- and y-coordinates, which is between 0 and 1 (reversed). In Figure 3.a, we can see that all the lines 

overlap, which means that the pair that this plot represents was working on the same program 

together. The plot in Figure 3.b has no overlap or there is a break in between, which means that the 

pair here was working on the same program but at different times, that is, C2 worked on the program 

ahead of C1. 

The chat log of each pair was examined to confirm whether the pair chatted in every program. 

The number of times they converged via chat was recorded per program. Figure 3.c shows an actual 

transcript of one of the pairs in this study. Collaborators A and B were currently working in program 

5. Collaborator B called the attention of A, A responded, and then both proceeded to check on 
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program 4. After some time, B asked A again if A was already working on a program about 

parenthesis matching. At this point, both were back to program 5. The pair in this example converged 

via chat twice while working on program 5. 

 

 
(a) 

 
(c) 

 
(b) 

Figure 3. Line Graphs showing (a) overlapped scan patterns (working on the same program together), 

(b) scan patterns with no overlap (not working together), and (c) actual chat transcript1. 

 
To answer the first research question, we recorded the distribution of the number of 

successful and unsuccessful cases under the three convergence types, which is found in Table 1. The 

average recurrence rates (RR) and debugging scores under the three convergence types are found in 

Table 2. The average RRs of the pairs that worked together on the same program and those that did 

not work together were comparable and the difference in RR was not significant. This could be 

explained by the element of chance, which means that even if the pairs are not looking or working 

on the same program together, it is possible that they might have fixated on the same parts of the 

program but only at different times. Performance-wise, pairs who worked on the same program 

together scored significantly higher than pairs who did not work together at (t = −2.754, p = 0.006). 

 

Table 1 
 

Distribution of Successful and Unsuccessful Cases in the Three Convergent Types 
 

Convergence Types N = 376 Successful (N) = 196 Unsuccessful (N) = 180 

Work together 269 161 108 

Did not work together 107 35 72 

Chatted 203 126 77 

Did not chat 173 70 103 

Both worked together and chatted 194 119 75 

Neither worked together nor chatted 182 77 105 

 

Surprisingly, the average RR of those who chatted was significantly lower (t = 3.53, p = 

0.000) than those who did not chat. A possible explanation is that majority of the cases where pairs 

chatted were successful and majority of the cases where pairs did not chat were unsuccessful (see 

Table 1). In a parallel study that we conducted, we found that the successful cases are characterized 

as having more incidences of “low RR” because of low fixation counts and less similar scan patterns, 

which both reduced the likelihood of having more recurrent fixations. This also affirms previous 

findings that pairs who communicated better but have low degree of gaze coupling suggests that 

these pairs do not have the explicit aim to coordinate their gazes. Instead, the gaze patterns become 

                                                 
1 The original transcript was in Bisaya (Cebuano) and translated to English. 
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aligned due to the joint activity of conversation and commonalities between the processes of speech 

comprehension and production (Richardson, Dale & Tomlinson, 2009).  

On the other hand, the unsuccessful cases, which comprised many of the pairs who did not 

chat, are characterized as having more occurrences of “high RR” because of their high fixation counts, 

more pronounced similarities in their scan patterns, and fixation cluster patterns which all 

contributed to an increase in RR.  Pairs with a high degree of gaze coupling but did not chat could 

just be a result of an unintentional gaze coordination, as opposed to a gaze coordination that is 

generated by conversational processes. In terms of performance, the average debugging score of 

those cases where pairs chatted was higher than those cases where pairs did not chat but the 

difference in their debugging scores was not significant. However, the 126 successful cases where 

pairs chatted scored significantly higher than the 103 unsuccessful cases where pairs did not chat 

(MSUCCESSFUL = 90.58, SDSUCCESSFUL = 8.08 / MUNSUCCESSFUL = 71.29, SDUNSUCCESSFUL = 12.91, t = 

−13.331, p = 0.000). 

 

Table 2 
 

Recurrence Rates and Debugging Scores under the Three Convergence Types 
 

Convergence Types 
Recurrence Rate Debugging Score 

Mean Std. Dev. Mean Std. Dev. 

Work together 0.40 0.14 81.34 14.52 

Did not work together 0.41 0.13 76.83 13.77 

Chatted 0.38 0.11 81.14 14.93 

Did not chat 0.43 0.15 78.78 13.77 

Both worked together and chatted 0.39 0.11 80.95 15.12 

Neither worked together nor chatted 0.42 0.15 79.10 13.63 

 
 

Considering the number of times the pairs converged via chat (M = 1.16, SD = 1.33, min = 

0, max = 7), we found that the average frequency of convergence via chat in successful cases was 

higher than in unsuccessful cases at (MSUCCESSFUL = 1.38, SDSUCCESSFUL = 1.36) and (MUNSUCCESSFUL 

= 0.93, SDUNSUCCESSFUL = 1.26). The difference in the number of times they converged was 

significant at (t=−3.346, p = 0.001). Since 125 out of 196 successful cases were from the 19 

successful pairs, 112 of the 180 unsuccessful cases were from the 22 unsuccessful pairs, this implies 

that the successful pairs converged more via chat than the unsuccessful pairs. 

No significant relationship existed between the frequency of convergence and the debugging 

scores of all the 203 cases where pairs chatted and the 70 successful cases where pairs did not chat. 

However, a significant low negative relationship was found between the frequency of convergence 

and the debugging scores of the 103 unsuccessful cases where pairs did not chat at (r = −0.202**, p 

= 0.007). This suggests that the more the unsuccessful pairs converge via chat, the more time they 

spend in a program. More time spent in a program could mean lesser bugs found because of time 

constraints imposed during the experiment, i.e., they need to find all the bugs in the 12 programs 

within an hour. This affirmed the statement of Rummel et al. (2011) saying that too much 

coordinative dialogue reduces the time available for the task itself. 

For the third type of convergence, the average RR of cases where pairs worked together on 

the same program and chatted was significantly lower (t = 2.515, p = 0.012) than those cases where 

pairs neither worked together nor chatted. This is also because majority of the cases where pairs 

worked together on the same program and chatted were successful and majority of the cases where 

pairs neither worked together nor chatted were unsuccessful. As previously mentioned, successful 

and unsuccessful cases are characterized as having more “low RR” and “high RR”, respectively. 

The average debugging scores of those cases where pairs worked together on the same 

program and chatted was just slightly higher than those cases where pairs neither worked together 

nor chatted and the difference was not significant. However, the 119 successful cases where pairs 

worked together and chatted scored significantly higher (M = 90.93, SD = 7.98) than the 

unsuccessful cases where pairs neither worked together nor chatted (M = 72.22, SD = 13.08) at (t = 

−13.083, p = 0.000). 
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Given the pair profiles such as proficiency, gender and acquaintanceship, who converged 

more via chat? Who performed the best? What is the relationship between the frequency of 

convergence and debugging scores based on these profile categories? The distribution of these 

categories including the mean and standard deviation are found in Table 3. We will refer to both 

highly proficient pairs, both low proficiency pairs, and mixed proficiency pairs as HH, LL, and HL, 

respectively. For the gender category, we will refer to both males, both females, and mixed gender 

pairs as MM, FF, and MF, respectively. For the acquaintanceship category, we will refer to poorly 

acquainted and highly acquainted pairs as PA and HA, respectively. 

Findings revealed that HL pairs significantly converged via chat the most while LL pairs 

converged the least (F = 3.326, p = 0.037). Based on gender, MM pairs chatted the most while FF 

pairs chatted the least and the difference was significant (F = 6.529, p = 0.002). Lastly, in terms of 

acquaintanceship, HA pairs significantly converged more than PA pairs at (t = −11.848, p = 0.007). 

No correlation, however, was found between the frequency of convergence and debugging scores 

based on these profile categories. 

 
Table 3 
 

Descriptive Values of the Frequency of Convergence based on Proficiency, Gender, and 
Acquaintanceship 

 

 Proficiency Gender Acquaintanceship 

 HH LL HL MM FF MF PA HA 

N 124 100 152 167 46 163 129 247 

Mean 1.19 0.89 1.33 1.43 0.80 0.99 0.20 1.67 

Std. Dev. 1.28 1.22 1.43 1.42 1.07 1.27 0.59 1.34 
 

We combined the three profile categories to determine which combination of these 

categories converged the most and the least and see how their frequencies of convergence via chat 

influence their debugging scores. From all the possible combinations of {(HH, LL, HL) x (MM, FF, 

MF) x (HA, PA)}, there were no HH-FF-HA, HL-FF-HA, and HL-FF-PA pairs. The differences in 

frequency of convergence as well as debugging scores among these combinations were significant 

at (F = 12.154, p = 0.000) and (F = 4.077, p = 0.000), respectively. 

Among the combinations, none of the HH-MF-PA, LL-MM-PA, LL-MF-PA, and HL-MF-

PA pairs chatted. The one thing that these combinations have in common is that these are all poorly 

acquainted pairs, suggesting that pairs consisting of non-friends are not really disposed to 

communicating or initiating contact with their partners. However, the HH-MF-PA pairs, despite of 

not having communicated at all, still performed second best. This was also true to the HH-FF-PA 

pairs, which performed the best despite of being among the bottom five in terms of convergence 

(including those four who did not chat). These two combinations consist of highly proficient and 

poorly acquainted pairs. This affirms the findings of Shah and Jehn (1993) that groups composed of 

skilled strangers will perform best because they already know from experience how to adapt well 

with other experts and they are more adaptable to the actions of their group mates.  This result also 

confirms our findings from our previous study using a smaller subset (Villamor & Rodrigo, 2017). 

We also found that the top two in terms of frequency of chat convergence, which were the 

LL-FF-HA and LL-MM-HA pairs, were in the bottom five in terms of performance. These 

combinations consist of highly acquainted pairs, which corroborates the findings of Shah and Jehn 

(1993) that friendship may diminish performance because they have the tendency to lose focus. As 

observed, these two combinations are both low proficient and have the same gender. This could 

mean that pairs with the same proficiency level and gender are more likely to communicate or 

collaborate. 

Combinations of LL-FF-PA, HH-MM-PA, HH-FF-PA, and LL-MM-PA pairs were all in 

the bottom half in terms of convergence. This implies that poorly acquainted pairs that have the same 

proficiency level and gender are less likely to chat. As to whether the pairs perform better or not, 

this is usually dictated by the proficiency level of the pairs regardless of the gender mix and 

acquaintanceship. The top four in terms of performance were all highly proficient pairs and all, 

except one, in the bottom six consisted of low proficiency pairs. 
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3.2 Leader-Follower Patterns 
 

In this experiment, we focused only on the lag times that reveal how much time one participant is 

ahead of the other. The number of positive (+) and negative (−) values of the lags were recorded. 

The signs indicate the gaze direction or who is leading/following. A positive and negative sign 

indicate that the collaborator along the x-axis and y-axis of the CRP, respectively, is leading. We 

defined a “more successful participant” within a pair as one that scored higher or found more bugs 

while a “less successful participant” is one that has found lesser bugs. We refer to these two types 

of participants within the pair as MSP and LSP, respectively. We included in this analysis only those 

cases where the pairs converged both by working together on the same program and communicated 

via chat and excluded those cases where both participants had the same debugging scores. 

For consistency, the pair ordering was set with the MSP first and followed by the LSP. One 

hundred seventy-eight (178) cases were analyzed, but one of these cases had exactly zero lag time. 

Hence, it was reduced to 177 where 90 and 87 of these cases were led by the MSPs and LSPs, 

respectively. Findings showed that the MSPs were leading by an average of 2.63 seconds 50.85% of 

the time, and the LSPs were ahead of the MSPs by an average of 1.66 seconds 49.15% of the time. 

T-test results showed a significant difference as to who was leading who (t = 2.320, p = 0.021). The 

lag times of those cases where the MSPs were leading the LSPs consisted of more “long lag times” 

(long = 31%, short = 21%), whereas the lag times of those where the LSPs were leading the MSPs 

comprised of more “short lag times” (long = 18%, short = 26%). A lag time is considered long if it 

is equal to or greater than the 75th percentile, and short if it is equal to or less than the 25th percentile 

of the data. 

Of the 90 cases where the MSPs were leading the LSPs, 55 of these cases had LSPs that 

were low proficient. This could explain as to why the lag times were longer when the MSPs were 

leading the LSPs. It could have taken longer for the low proficient LSPs to find the target and then 

fixate on it after it has been mentioned by the MSPs. On the other hand, of the 87 cases where the 

LSPs were ahead of MSPs, 66 of these cases had MSPs that were highly proficient. This could 

account for the shorter lag times when the LSPs were leading the MSPs. It could be that the highly 

proficient MSPs are quick to find on the program what the LSPs are referring to. 

In terms of debugging scores, the average debugging score of those cases where the LSPs 

were ahead of the MSPs (M = 82.98, SD = 14.79) were slightly higher than those cases where the 

MSPs were ahead of the LSPs (M = 80.26, SD = 14.98). The difference in debugging scores, 

however, was not significant. No relationship was found between the leader-follower lag times and 

the debugging scores of the pairs. The average RR of those cases where MSPs were leading the LSPs 

and vice versa were comparable at (MMSP-LSP = 0.39, SDMSP-LSP = 0.11) and (MLSP-MSP = 0.40, SDLSP-

MSP = 0.12). The difference in RR was also not significant. The relationship between RR and the 

leader-follower lag times likewise did not exist. 

  

 

4. Summary, Implication, and Future Work 
 

This paper investigated the convergence and leader-follower patterns as well as the collaborator 

profiles and how these influenced success in pair programming. In summary, pairs working together 

on the same program and who communicated via chat scored better than those who did not. 

Successful pairs also converged more via chat than the unsuccessful pairs. On collaboration based 

on RR, pairs who worked together on the same program and chatted had low RR on the average than 

those who did not. This is because majority of those cases who worked together and chatted were 

successful, which were characterized as having more “low RR”. Poorly acquainted pairs with the 

same proficiency level and gender were less likely to converge. As to whether pairs performed 

better or not, this was usually dictated by the proficiency level of the pairs regardless of gender mix 

and degree of acquaintanceship. Findings also revealed that there was a significant difference as to 

who was leading who. The more successful participants within a pair were leading the less 

successful participants majority of the time. 

This study overlays the foundation to understand more the dynamics that take place in a 

pair programming setup. Results of this study and similar studies in the future can help 
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programming professors implement pair programming effectively through proper pair matching 

that will elicit productive dialogues as well as design remediation that can help their students learn 

programming much easier with the help of a more suitable partner.  Researchers can investigate 

further about the underlying reasons why one would initiate contact over the other and the ways 

where joint attention can be increased and then assess how these affect the success of the 

programming pairs.  

Our next step would be to look at the nature of the discourse to see what really conspired 

when the pairs chatted. It could be possible that those who chatted were successful is because one 

just told the other the answer. We would also assess the quality of the discourse to properly assess 

its collaboration aspects and see how it impacts the success of the pairs. It is also interesting to 

explore the divergent episodes to see how much independent work has been done by the participants 

in the pair and how it influences pair success. 
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