
a

Git as a support to assess students'

contribution in teamwork

Mélissa Clarisse NTIRANDEKURAa & Thierry EUDEa*

Dept. of Computer Science and Software Engineering, Laval University, Canada

*Thierry.eude@ift.ulaval.ca

Abstract: Teamwork is one of the ways to develop the transversal competencies expected

in industry, especially in the field of Information Technology. However, the success of

teamwork during programming courses depends on the choice of tools that facilitates

collaborative work, organization and conflict management. Objectively evaluating both the

individual and the collaborative work must be a great part of this choice. Among these tools,

we propose to retain the version control system Git. Indeed, Git facilitates teamwork

evaluation by giving access to information recorded in its history. It then becomes necessary

to define the criteria to be applied to make an analysis and a judgment. We propose in this

article an inventory of the potential evaluation criteria and identify the most relevant ones

in terms of evaluation of the regularity and quantitative contribution considering the biases

that they induce. Moreover, one of the difficulties that teachers may encounter when

producing an assessment is not only to evaluate contributions, but also to be able to monitor

them regularly, especially when teams are numerous. We then recommend a support tool

based on the criteria we identified, offering a general overview and facilitating access to

details. Its evaluation as part of a course allowed us to analyze different team profiles as well

as the limits to the use of such a tool to make a judgment.

Keywords: Transversal competencies, computer science education, Git, evaluation criteria,

teamwork assessment

1. Introduction

During academic training, teamwork is one of the best ways to acquire and consolidate transversal

competencies, especially in the field of Information Technology. However, the success of teamwork

during programming courses depends, among other things, on the choice of tools to facilitate

collaborative work, the organization of teammates, their collaboration and their management of

conflicts (Brun, Holmes, Ernst, & Notkin, 2013). The possibility of being able to objectively

evaluate both the individual and the collaborative work of the team members must be a great part of

this choice (Laadan, Nieh, & Viennot, 2010) (Haaranen & Lehtinen, 2015). Lanubile et al. (Lanubile,

Ebert, Prikladnicki, & Vizcaı́no, 2010) have proposed different tools in this direction. Among these

tools we will retain the Git version control system. The next step is to identify the criteria that can

be considered to quantify contributions during teamwork. By having a support tool that allows for

quick monitoring of each team, a teacher will be better able to identify a team that is going through

a period of conflict. This then requires an analysis, and an agreement on the right decision to make.

2. Evaluation Criteria

In order to be able to evaluate the regularity of the team, based on the Git repositories, the use of a

visual illustration or the result of specific git commands can be used to observe the degree of absolute

or relative contribution of each member over time in terms of lines of code or commits. It is important

to be able to know the detailed contributions of each member in terms of volume that can be

associated with a quantity of work. The number of commits can indirectly represent the regularity

by measuring their frequency, but also the contribution by measuring their number. The number of

files can be a good indicator of individual contribution but it should be associated with other criteria

340

Yang, J. C. et al. (Eds.) (2018). Proceedings of the 26th International Conference on Computers
in Education. Philippines: Asia-Pacific Society for Computers in Education

such as the number of commits. The number of lines of code can be a good indicator of contribution.

However, not all lines in a source code match the same degree of contribution. Also, there are several

variants of SLOC (Source Line Of Code) (Bhatt, Tarey, Patel, Mits, & Ujjain, 2012) but only some

of them can be considered as a contribution measure. It therefore appears that, in practice, only the

actual lines of code, in other words, the executable physical can be used on the basis of the

information collected from the Git repositories as a criterion for evaluating the contribution of each

team member. In addition, these lines of code completed by the commits are the best criteria to retain

when evaluating teamwork.

3. Gitanalysis : a Tool to Support Assessment

One of the difficulties that teachers may encounter when producing an individual assessment of the

knowledge and skills actually developed by their students during team-based programming work is

not only to be able to evaluate their respective contributions, but also to be able to track them

regularly. Having a support tool that offers a general overview and facilitates access to details

becomes essential, especially if the teams are numerous. Gitanalysis is a tool allowing a global vision

of the regularity and the quantitative contribution of all the teams in the form of a scoreboard which

can represent all the teams and their members as shown in Error! Reference source not found..

Figure 1. Evaluation of teams by Gitanalysis for a period of 4 months on java files (extract)

In order to be free from opportunistic activities, the regularity is determined as the average of

the differences between the last 4 days when commits were made. Each member can then be

classified according to his regularity according to intervals in number of days of activity. Thus, the

member is considered regular, less regular or irregular if the regularity is found respectively in the

intervals of [0, 7], [8, 10] or [11, [. Indeed, if the member spends more than 10 days without making

new contributions, he will potentially encounter difficulties in closing the gap.

The last activity is evaluated as the number of days elapsed between the date of the last commit

and the date of analysis which is by default the current date or the date the user selects to determine

the last activity of each member of the team. It is considered recent if it is in the interval of [0, 7],

contemporary if it is in the interval of [8, 10] and old if it is in the interval of [11,  [.

The activity indicator is determined from the last activity and the regularity. It allows

classifying a member as an active member, a member to supervise or a member at risk.

From the quantitative contribution made by each member of the team, Gitanalysis also

determines that of the entire team. Indeed, we have the total number of LOC (Lines Of Code) added

and deleted by all team members as well as the total number of commits. Gitanalysis is also based

on the activity indicator of each member to evaluate that of the entire team. We can then distinguish

functional teams when most of members are active ("Loutre" team in Figure 1), temporarily

dysfunctional teams when most of members are to be supervised ("Studio" team in Figure 1) and

dysfunctional teams when at least one of the team members is at risk ("Gaff" team in Figure 1).

341

4. Limits

First, when analyzing the contribution of each member of the team, taking into account some lines

of code added can skew the result of the analysis. Indeed, if a member adds a library, it will be

counted as a contribution. Second, if a team member uses multiple computers to push his code and

his computers are configured with different names and emails, Gitanalysis will not consider it is the

same person who shared his work. So, to avoid this case, teams would be advised to configure Git

with the same name and email on all the computers they would use. Third, to be well evaluated,

team members should make regular commits each week, to prevent their teams from being evaluated

as being temporarily dysfunctional or dysfunctional teams. Fourth, considering the modified lines

of code as a great contribution to teamwork, when handing over the work, is not necessarily true

because the member who started by adding lines of code is often the biggest contributor. Finally,

dysfunctional teams are to be considered with caution. If one of the members drops the course, it

penalizes the rest of the team. Thus, for a dysfunctional team, when at least one of the team members

is at risk, it would be necessary to decide if it represents an abandonment and recalculate the activity

of the team by omitting the abandonment.

5. Conclusion

In computer science education, teamwork is a means of developing the transversal competencies

expected in the industry. However, the evaluation of this work as part of a course remains a real

challenge for teachers, especially if the teams are numerous. We propose in this article the use of the

Git version control system as support. After reviewing the possible criteria, it appears that the

commits and LOC are the most relevant ones when assessing the team's regularity and the

quantitative assessment of the contribution of each team member. We then proposed a typical

application, presenting a scoreboard of contributions. This support tool provides a quick overview

for the teacher who uses it to keep track of team progress, while highlighting members in difficulty.

It then facilitates monitoring.

Also, for the teacher to make a final judgment in order to establish a summative evaluation,

this tool should be used in conjunction with peer assessment.

Acknowledgements

T. Eude gratefully acknowledges the financial support of Cisco.

References

Bhatt, K., Tarey, V., Patel, P., Mits, K. B., & Ujjain, D. (2012). Analysis of source lines of code (SLOC)

metric. International Journal of Emerging Technology and Advanced Engineering, 2, 150-154.

Brun, Y., Holmes, R., Ernst, M. D., & Notkin, D. (2013, 10). Early Detection of Collaboration Conflicts and

Risks. IEEE Transactions on Software Engineering, 39, 1358-1375.

Haaranen, L., & Lehtinen, T. (2015). Teaching Git on the Side: Version Control System As a Course Platform.

Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science

Education (pp. 87-92). ACM.

Laadan, O., Nieh, J., & Viennot, N. (2010). Teaching Operating Systems Using Virtual Appliances and

Distributed Version Control. Proceedings of the 41st ACM Technical Symposium on Computer

Science Education (pp. 480-484). ACM.

Lanubile, F., Ebert, C., Prikladnicki, R., & Vizcaı́no, A. (2010). Collaboration tools for global software

engineering. IEEE software, 27, 52.

342

