

The Effect of Cognitive Styles and Guidance

Strategies on Children’s Performance in

Learning Programming

Chia-Yen FENG
a*

& Ming-Puu CHENb

Graduate Institute of Information and Computer Education, National Taiwan Normal University,
Taiwan

*yeni0412@gmail.com

Abstract: This study aims to explore the impact of cognitive styles and guidance strategies

on the learning effectiveness and attitude of primary school students learning programming
design. With six-grade students as its subjects, this study employs the quasi-experimental

research method of 2 x 2 factorial designs to study 106 valid samples. The independent

variables are cognitive styles (FD vs. FI) and guidance strategies (question-guidance vs.

completion problem-guidance), while dependent variables are learning effectiveness and

attitude. This study finds that (1) in terms of the learning effectiveness of programming

design, the FI cognitive style group is more effective than the FD group in applying the

program acquired during the project assignment, whereas the completion problem-guidance

group scored higher than the question-guidance group; (2) in terms of program learning

attitude, the completion problem-guidance group holds a more positive attitude towards the

benefit of learning programming design than the question-guidance group. It is suggested

that future studies target the analysis of programming design strategy and problem-solving

behavior, to further explore the thinking process of learners.

Keywords: cognitive styles, guidance strategies, experienced learning

1. Introduction

Programming design is regarded as one of the key abilities to solve real world problems (Grover &

Pea, 2013). Using computational thinking to solve problems has become an essential skill for
modern people. Computational thinking is a way of thinking via computers to solve problems

systematically and logically. In particular, programming design is the best approach to developing

computational thinking (Chen, Shen, Barth-Cohen, Jiang, Huang & Eltoukhy, 2017).

The process of programming design involves complex cognitive processes, since learners
need to understand programming grammar and instructions as well as have problem-solving skills

during the learning process. In particular, Govender and Grayson (2006) point out that for learners,

problem-solving skills have the most influence on programming ability. However, programming
design is not only to combine a number of instructions, but also represents a series of steps to solve

problems (Chen, 2007). Beginners would encounter many challenges in learning programming

language (Feng & Chen, 2014; McCall, 2016). For instance, in respect of problem solving, these
learners often cannot find a clue to start with and apply the knowledge learnt, thus failing to enter the

passage of solving the problem (Lye & Koh, 2014) and resulting in low interest in learning (West &

Ross, 2002).

Hence, Soloway and Spohrer (2013) point out that the environment for beginners to learn
programming language should be characteristics of simplicity and visualization. This study employs

Scratch, a visual programming learning application developed by the Media Lab of MIT, as the tool

for experiment. Scratch helps concretize abstract concepts through its visualized programming
design interface and uses modes of representation to reduce the grammar that restricts students

during programming design. Besides, its puzzle-style design allows easy operation, and enables

563

Yang, J. C. et al. (Eds.) (2018). Proceedings of the 26th International Conference on Computers
in Education. Philippines: Asia-Pacific Society for Computers in Education

learners to avoid getting lost in dealing with wrong meaning or grammar. Instead, learners can focus
on logical reasoning for problem solving during their programming design. Moreover, the dynamic

presentation boosts students' learning interest and fits into the characteristics of aboriginals, such as

processing diverse information, image preference, active exploration and interactive learning

(Prensky, 2001).
Apart from that, cognitive style has a crucial impact on the learning of programming design

(Mancy& Reid, 2004). Preferential differences in cognitive style may lead to distinctive structural

knowledge among learners and directly affect the manner of information acquisition and problem
handling. This, in turn, causes the difference in imitation, disassembly and modification. Under the

information interaction among different individuals, the sharing and feedback mechanism may lead

to different programming design strategies and problem-solving behaviors, which affect learning
effectiveness. Therefore, teaching models can be predicted by understanding the individual

differences in cognitive style among learners and analyzing possible operational process and

learning effectiveness (Riding & Cheema, 1991).

Hence, this study is designed to explore cognitive style and prompt strategy as key support
to guide learners to complete game design assignments. The following questions are studied:

(1) What impact does the combination of different cognitive styles and guidance strategies

have on the learning effectiveness of programming design among learners?

(2) What impact does the combination of different cognitive styles and guidance strategies

have on the learning attitude of programming design among learners?

2. Review of related studies

2.1 Experienced learning

Kolb (1984) emphasizes that learning is a process of constantly converting experience and creating
knowledge, while knowledge is the outcome of comprehension and experience conversion. In this

study by Abdulwahed and Nagy (2011), an experiential learning cycle was integrated into the

teaching design, to allow learners to study chemistry concepts by doing experiments in a virtual
laboratory. The result suggests that learners' reflection can be facilitated and achieve a better

learning effectiveness under a feedback mechanism, which is composed of doing experiments and

the virtual laboratory.
As shown in Figure 1, Kolb (1984), having considered that experiential learning is a

complete cyclic process, divides learning into a four-stage cycle, which includes concrete

experience (CE), reflective observation (RO), abstract conceptualization (AC), and active

experience (AE). Specifically, (1) CE is to learn through perception, by integrating the operational
experience from the real world and daily life into the learning situation, thus enabling learners to

construct knowledge independently; (2) RO is to leverage different information and content to

stimulate learners to observe, start reflection by comparing previous knowledge and experience, and
try to relate to their experience to find a solution to the problem; (3) AC is to summarize and

synthesize thoughts and experience during the thinking process, to form concepts as the most ideal

solution to the problem; and (4) AE is for learners to consolidate the acquisition concept, leverage

self-checks to determine whether the concept is correct, and apply such knowledge and reasoning to
various other situations.

2.2 Cognitive Styles

Cognitive style is a personal trait. Witkin, Oltman, Raskin & Karp (1971) believes that

cognitive style is the personal way of organizing and searching information, through which one can
understand how a person applies his/her intelligence to learn. Cognitive style also represents the

individual habit and preference of searching and describing information (Chen, 2002). The

categorization of cognitive styles varies among different scholars, depending on their perspectives
and analytical aspects. Nonetheless, out of numerous categorization of cognitive styles, the most

564

explored and studied one is the division into field independence (FI) and field dependence (FD)

(Witkin, Moore, Goodenough & Cox, 1977). In 1971, Witkin put forward the Grouped

Embedded Figure Test (GEFT) as a test instrument, which comprised 25 test items. In

particular, subjects are required to identify the simple geometric figures that are embedded

in complex ones within limited time; both the accuracy of identifying such simple figures

and the number of identified ones are used to distinguish FI and FD (Witkin et al., 1977).In

general, FI learners excel in constructing and organizing information in the hypermedia

learning environment, as they are more capable of working out the content on their

assignment according to its requirements and widely selecting usable clues for application.

By comparison, FD learners perform poorly in information analysis and organization. While

they are inclined to opt for a more passive learning approach, their FI counterparts are

inclined to choose a more active learning method (Lin & Gayle, 1996).

Figure 1. The experimental learning cycle helps cultivate diverse learning experience and improve

learning effectiveness through four learning stages.

2.3 Guidance strategies

In teaching, guidance refers to providing learners with precise and complete information and

relevant narrative knowledge, thereby helping learners to complete a task, address the problem and

attain the objective during the problem-solving process (Clark, 2009). During knowledge transfer,
learners need guidance during their practice and feedback during their performance of a task, so that

learners are corrected immediately and apply such experience to other situational tasks (Hill &

Hannafin, 2001; Lazonder & Harmsen, 2016; Matlen & Klahr, 2013). Textbook design can help to
guide learners in their study, reduce their cognitive load during the cognitive process. Proper

guidance and prompts can help the construction of abstract concepts and connect them to specific

knowledge. Some researchers believe that an approach featuring a high level of guidance to help

learners study knowledge and concepts step by step, can allow knowledge to be quickly and
temporarily stored in short-term memory. Nevertheless, the knowledge cannot be transferred to

long-term memory and applied to new situations; a low level of guidance can prompt learners to

learn actively, reflect on problems and construct knowledge, thus achieving meaningful learning
(Clark, 2009; Hill & Hannafin, 2001).

Hill and Hannafin (2001) raised four approaches of learning guidance, namely, (1) concept

guidance: conceptual information relating to the learning content is provided to connect learners to
the theme of learning; (2) question guidance: questions are raised to guide learners to think, examine

actively, test and modify a given concept; (3) procedure guidance: learners are guided to think step

by step, complete tasks, construct knowledge and attain a deeper level of cognitive development;

and (4) strategy guidance: professional strategies, methods or suggestions are offered to guide
learners to complete tasks. Based on various levels of prompts, this study focuses on two guidance

strategies that guide learners in learning programming design, namely, question guidance (low-level

Concrete

Experience

Reflective
Observation

Abstract
Conceptualization

Active Experience

565

guidance) and completion-problem guidance (medium-level guidance) which are explored as
follows.

2.3.1 Question guidance

Question guidance allows learners to properly reflect and explore the problem during the

problem-solving process, seek the solution from the situation of the problem concerned, sort it out,
construct knowledge and store it in long-term memory. Such systematic construction cultivates the

problem-solving ability (Dean & Kuhn, 2007; Lazonder & Harmsen, 2016).

2.3.2 Completion problem- guidance

Van Merrie ̈nboer and Sweller (2005) holds that beginners are not suitable to be taught to do direct

programming and create new programs. Hence, he put forward the completion strategy, which

emphasizes that beginners are offered “well-structured” programs for reading, modification and
expansion. His research findings show that students who employed the completion strategy created

better program templates and attained greater effectiveness in comprehending meanings thanks to

the support of robust learning examples. Hence, completion problem refers to that textbooks present
given conditions, target conditions and some steps to follow, and that learners should complete the

problem and work out the answer by themselves based on the clues given to them. This serves as a

bridge between worked examples and ordinary problem solving (Sweller, Van Merrienboer, & Paas,
1998).With the significance and application of the above guidance strategies in mind, one may

conclude that it is helpful to offer learning guidance to learners. In textbook design, proper

integration of guidance strategies helps learners in knowledge exploration and construction,

reflection, and connection of abstract concepts with concrete knowledge during the cognitive
process. This study has question guidance and completion-problem guidance as the strategies for

guiding programming design, puts forward respective conceptual questions to help learners reflect

and provide them with half-finished programs as prompts, and explores whether both guidance
strategies can effectively improve learning effectiveness and attitude.

3. Methods

3.1 Participants

This study recruited 106 sixth-grade students (51 males and 55 females aged between 11 and 12

years) from six classes at an elementary school in northern Taiwan. They participated in activities to

learn game design for 40 minutes per week over eight weeks. The domain knowledge included
computer programming using Scratch programming language. All participants were novices to

programming; however, they had spent four weeks observing the scripts for games made using

Scratch before their actual hands-on experience.

3.2 Framework of research design

A quasi-experimental, 2 x 2 (cognitive styles x guidance strategies) factorial design was employed to

investigate the impact of cognitive styles and guidance strategies on learners’ performance and
attitude to game programming. The independent variables were cognitive styles (field-independence

vs. field-dependence) and guidance strategies (question-guidance vs. completion problem-guidance),

structured in the experiential learning cycle and integrated into the four stages of this
cycle—concrete experience, reflective observation, abstract conceptualization and active

experience.

This study has two dependent variables, namely, “learning performance of programming

design” and “learning attitude of programming design”. The former refers to the outcome of a
learner’s performance of game programming design after experiment-based teaching, which

comprises of (1) programming comprehension: the understanding of programming knowledge

contained in programming blocks; and (2) programming application: the ability to achieve
objectives through a proper combination of different programming blocks. “Learning attitude of

566

programming design” refers to a learner’s view of the learning attitude towards programming design
after experiment-based teaching, which comprises of (a) learning motivation: the learner’s interest

in, willingness and the extent of preference towards the course; (b) learning benefit: the extent of

benefit from learning approaches and instruments perceived by the learner; and (c) learning

satisfaction: the extent of satisfaction with learning approaches and instruments on the part of
learners.

3.3 Procedures

First, participants underwent the Grouped Embedded Figure Test (GEFT) and a test on the

preparatory knowledge of programming concepts. Then, they took an example-based practical

course to analyze the elements of a game and construct such concepts as repeated execution,
sequential and parallel programming, condition execution and variables. Afterwards, there were a

total of four sessions for the special game design “Monkey Catching Bananas” (Figure 2), in which

participants followed guidance strategies to complete their works step by step (Table 1). In the last
session, participants took a test on programming concepts to show their project performance, and

filled in a questionnaire composed of a learning attitude scale, which is designed to understand their

learning motive, benefit and satisfaction.

Figure 2. Game Design Sample, “Monkey Catching Bananas”

Table 1

Examples of guidance strategies
Question-guidance Completion problem- guidance

Let the banana move to the right at the

beginning. When you encounter the left and right

edges (x position), let the banana fall in the
opposite direction and move it one line down.

Think about it:

1. How to move the banana to the right? Which
direction is the direction?

2. Let the left and right edges of the banana fly in

the opposite direction, and move down one line

when touching the edge

Let the banana move to the right at the

beginning. When you encounter the left and right

edges (x position), let the banana fall in the
opposite direction and move it one line down.

3.4 Instructional design

In this study, learning activities are structured in an experiential learning cycle to enable learners to

develop correct concepts on programming design through four steps, including “concrete
experience”, “reflective observation”, “abstract conceptualization” and “active experience”, and

facilitate positive learning motivation and effectiveness. The special game design course “Monkey

Catching Bananas” stimulated learners’ interest. The course comprises of three tasks, with the

objectives of each task and course content structure illustrated in Table 2.

567

Table 2

A Teaching Model Integrating “Monkey Catching Bananas” into the Experiential Learning Cycle

Step
Significance of Each Stage
in the Cycle

Planned Tasks

Concrete
experience

Learning through perception
and by integrating the
operational experience from
the real world and daily life
into learning situations, so
that learners can construct
knowledge independently.

Task 1: To enable the monkey to move
From the Scratch example, students experience the
abstract concepts of programming language
(sequential and parallel programming, repeated
execution, global variable, sequential structure, and
conditional structure), set tasks and objectives, and
identify the problem.

Reflective
observation

In the course of the activity
experience, you can think of
ways to understand the
existence or observation of
doubts in your own
problems, and try to find
ways to solve problems by
linking past experience.

Task 2: Monkey Catching Bananas
1. Through guidance, students undergo reflection
and observation from constant trial and error during
the programming design process, and acquire the
correct game approach, understand the
programming language and record it in their
worksheets.

Abstract
conceptualization

Generalizing and sorting out
the thoughts and experience
from the thinking process,
and form concepts to serve
as the ideal solution to the
problem.

2. Students utilize toy blocks and task prompts to
experience the abstract concepts of programming
language in the game process. The teacher
introduces programming concepts to guide students
to develop their own combination of toy blocks,
acquire correct abstract concepts and achieve the
task objectives.

Active
experience

Learners should be able to
consolidate the acquisition
concepts, do self-checks to
determine whether a
concept is correct, and apply
such knowledge to problems
in different situations.

Task 3: Monkey’s Adventure in the New
Amusement Park
Discussion and sharing take place to modify
programs and verify whether the structure and
concept of programming language are correct.

3.5 Instruments

3.5.1 Test on the Learning Effectiveness of Programming Design

The test on the learning effectiveness of programming design mainly aims to assess the learner’s

comprehension and application of programming design concepts after learning programming design
through guidance strategies. The test, with knowledge comprehension and application as its

dimensions, comprises of 15 multiple-choice items, including 6 items on knowledge comprehension

and 9 on knowledge application. The test content is identical to that on preparatory knowledge of

programming design concepts, but the items and the order of choices are rearranged randomly. The

Cronbach α coefficient was .847.

3.5.2 Project grading rubrics

Project grading rubrics were used to evaluate programming skills in the application of Scratch

programming to design the game. The project grading rubrics comprised five aspects: correct

programming, the completeness of programming, content creativity and the user’s interaction with
various styles of sprites (e.g., color and animation effects), appealing interface, and creative

performance. When the project had been completed, each criterion in was evaluated on a scale of ten.

568

Three experts evaluated the projects developed by the participants. The grading correlation

coefficient between the experts was 0.751 (Kendall’s ω).

3.5.3 Learning attitude scale

The scale was divided into three dimensions: learning motivation, learning benefit, and learning

satisfaction. Learning motivation measured the learners’ interest and how much they enjoyed the

game design courses; learning benefit measured the degree to which the learners found the course
helpful; learning satisfaction measured students’ satisfaction with the game design programming

course. A Likert-type scale was adopted, ranging from “strongly agree” to “strongly disagree”. The

reliability coefficient was 0.78 (Cronbach’s alpha).

4. Results

4.1 Influence of cognitive styles and guidance strategies on programming performance

As shown in Table 3, the two cognitive styles with completion problem-guidance obtained higher
scores in programming comprehension, and the field-independence with completion

problem-guidance obtained higher scores in programming application. Whether the differences

between the mean of the two groups was statistically significant was further examined.

Table 3
 Group means of game design performance

 Guidance strategies

 Question-guidance Completion problem-
guidance

Total

 M SD n M SD n M SD n
programming comprehension

Cognitive
styles

FI 59.81 21.79 28 70.54 17.45 26 67.02 19.44 54

FD 63.65 21.43 26 70.38 16.70 26 65.37 20.22 52
Total 67.02 19.43 54 70.46 17.05 52 66.18 19.76 106

Programming application
Cognitive

styles
FI 72.68 18.38 28 81.73 12.57 26 78.94 13.59 54

FD 76.15 14.23 26 67.69 17.85 26 70.28 18.13 52
Total 74.35 16.46 54 74.71 16.85 52 74.54 16.57 106

Table 4 reflects a prominent difference in the knowledge application effectiveness in

relation to cognitive style (F (1,102) =7.93, p<. 05), as post hoc comparison finds that the mean of the
FI group (M=67.02) is higher than that of the FD group (M=65.37); and there is also a prominent

difference in the knowledge comprehension effectiveness in relation to guidance strategies (F (1,102) =

5.31, p<. 05), as post hoc comparison finds that the mean of the “completion problem-guidance”

group (M=74.71) is higher than that of the “question-guidance” group (M=74.35).As to the reason
for the above research results, learners who prefer field independence (FI) is most effective in

programming comprehension, mainly because they are more active in programming study and able

to dissemble and reassemble the existing programs when they observe the program example; during
programming design, they understand the connection among programming codes, which benefits

the ability to address similar problems in the future and the understanding of programming concepts.

On the other hand, learners who took “completion problem-guidance” are more effective in
programming application, which is consistent with Sweller et al. (1998). For such academic fields as

programming design, it is more effective to teach beginners with examples than starting with

problem-solving. Example-based learning is combined with “completion problems” designed in

different ways, which can help beginners to gain from basic models when learning the examples and

569

can help students to better understand abstract concepts. Hence, they can score better performance in
project assignments.

Table 4

MANOVA summary of the performance of cognitive styles and guidance strategies on dependent
measures

Source
Dependent
Variable

Type III
Sum of
Squares

df
Mean
Square

F Sig.
Partial Eta
Squared

Cognitive
styles

Programming
comprehension

90.36 1 90.36 .24 .63 .002

Programming
application

2030.00 1 2030.00 7.93* .016 .072

Guidance
strategies

Programming
comprehension

2017.28 1 2017.28 5.31* .02 .049

Programming
application

2.31 1 2.31 .01 .93 .000

Cognitive
styles


Guidance
strategies

Programming
comprehension

105.75 1 105.756 .28 .60 .003

Programming
application

738.46 1 738.46 2.89 .09 .028

Error

Programming
comprehension

38765.04 102 380.059

Programming
application

26098.15 102 255.86

 *p<.05

4.2 Influence of cognitive styles and guidance strategies on learning attitude

Table 5 shows that the average score of “question-guidance” learners is higher than their

“completion problem-guidance” counterparts in terms of the learning motivation and satisfaction
under programming learning attitude. However, a variance analysis is needed to further examine

whether there is any difference.

Table 6 reflects a prominent difference in learning benefits in relation to guidance strategies

(F (1,102) =4.82, p<. 05), as post hoc comparison finds that the benefit of learning programming

design for the “completion problem-guidance” group (M=3.75) is significantly higher than that of

the “question-guidance” group (M=3.26). This is presumably because the former observes the
operation of programming examples and uses the assistance of worksheets to select the

programming block that most approximates the programming example. By doing so, students can

observe programming operation, acquire basic programming concepts, integrate the acquired
concepts into actual programming blocks and convert them into concrete programming instructions.

Therefore, perception improves the comprehension of programming concepts and benefits project

work.

5. Conclusions

This study summarizes research results and concludes that (1) in respect of the learning
effectiveness of programming design, the FI group is more effective than the FD group in applying

the acquired program during project work, and the completion problem-guidance group is better

than the question-guidance group; and (2) in respect of the learning attitude of programming design,

570

Table 5
Group means of game design learning attitude

Question-guidance

Completion problem-
guidance

Total

M SD n M SD n M SD n

Learning motivation

FI 3.47 1.02 27 3.41 .87 38 3.43 .929 65

FD 3.65 .69 27 3.40 .59 14 3.56 .66 41

Total 3.56 .87 54 3.40 .80 52 3.49 .83 106

Leaning benefit

FI 3.26 1.02 27 3.75 .98 38 3.54 1.02 65

FD 3.68 .936 27 3.28 .93 14 3.54 .94 41

Total 3.47 .99 54 3.62 .98 52 3.54 .98 106
Learning satisfaction

FI 3.38 1.01 27 3.33 1.02 38 3.35 1.00 65

FD 3.64 .89 27 3.24 .79 14 3.50 .87 41

Total 3.51 .95 54 3.31 .99 52 3.41 .956 106

Table 6
MANOVA summary of the learning attitude for the cognitive styles and guidance strategies on

dependent measures

Source Dependent
Variable

Type III Sum
of Squares

df Mean
Square

F Sig. Partial Eta
Squared

Cognitive
styles

Learning
motivation .18 1 .18 .260 .61 .003

Learning benefit .02 1 .02 .022 .88 .000
Learning
satisfaction .18 1 .18 .195 .66 .002

Guidance
strategies

Learning
motivation .56 1 .563 .797 .37 .008

Learning benefit .04 1 .04 4.82* .03 .000
Learning
satisfaction 1.15 1 1.15 1.252 .27 .012

Cognitive
styles


Guidance
strategies

Learning
motivation .22 1 .22 .308 .58 .003

Learning benefit 4.57 1 4.57 .042 .84 .045
Learning
satisfaction .720 1 .72 .782 .38 .008

Error Learning
motivation 72.09 102 .71

Learning benefit 96.64 102 .95
Learning
satisfaction 93.86 102 .92

*p<.05

learners from the completion problem-guidance group hold a more positive attitude towards the

learning benefit of programming design than the question-guidance group.

6. Limitations and future research

This study employs quantitative analysis to gauge the impact of learners’ cognitive style and

learning guidance strategy on the learning effectiveness and attitude of programming. It is suggested

that future research can analyze the strategy and problem-solving behavior of programming design,

571

further explore learners’ thinking process, and study the connection between the information

conversion and learning effectiveness of learners during their disassembly process.

Acknowledgement

This study is supported by the Ministry of Science and Technology, Taiwan, R.O.C. under Grant

MOST 106-2511-S-003 -049 –MY3.

References

Abdulwahed, M., & Nagy, Z. K. (2011). The TriLab, a novel ICT based triple access mode laboratory

education model. Computers & Education, 56(1), 262–274.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary

students’ computational thinking in everyday reasoning and robotics programming. Computers &

Education, 109, 162–175.
Clark, R. E. (2009). How much and what type of guidance is optimal for learning from instruction?

Constructivist Instruction: Success or Failure, 158–183.

Dean Jr, D. & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91(3),

384–397.

Feng, C.Y., & Chen, M. P. (2014). The effects of goal specificity and scaffolding on programming

performance and self-regulation in game design. British Journal of Educational Technology, 45(2),

285–302. (SSCI, DOI: 10.1111/bjet.12022).

Govender, I. & Grayson, D. (2006). Learning to program and learning to teach programming: Acloserlook.

Paper presented at the 2006 World Conference on Educational Multimedia, Hypermedia &

Telecommunications (ED-MEDIA2006), Orlando, Florida.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: a review of the state of the field. Educational

Researcher, 42(1), 38–43. 

Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of

resource-based learning. Educational Technology Research and Development, 49(3), 37–52.

Kolb, D.A. (1984). Experiential learning: experience as the source of learning and development. Englewood

Cliffs, NJ: Prentice Hall. Retrieved from https://academic.regis.edu/ed205/kolb.pdf.
Lin, H. & Gayle, V.D. (1996). Effects of linking structure and cognitive style on students’ performance and

attitude in a computer-based hypertext. Environment. Journal of Educational Computing Research, 15,

17–329.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through

programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

Mancy, R., & Reid, N. (2004). Aspects of cognitive style and programming. In E. Dunican & T. Green (Eds.),

Proceedings of the Sixteenth Annual Workshop of the Psychology of Programming Interest Group

(PPIG ’04; pp. 1–9). Carlow, Ireland: Institute of Technology.

McCall, D. (2016). Novice Programmer Errors-Analysis and Diagnostics. Doctor of Philosophy (PhD) thesis,

University of Kent.

Prensky, M. (2001). Digital Natives, Digital Immigrants. On the Horizon, 9(5), 1–6.

Riding, R. J. & Cheema, I. (1991). Cognitive styles-an overview and integration. Educational Psychology,
11.3–4: 193–215.

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer. Psychology Press.

Sweller, J., van Merriënboer, J.G., & Paas, F.G.W.C. (1998). Cognitive architecture and instructional design.

Educational Psychology Review, 10 (3), 251–297.

Van Merrie n̈boer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent

developments and future directions. Educational Psychology Review,17, 147–177.

West, M., & Ross, S. (2002). Retaining females in computer science: A new look at a persistent

problem. Journal of Computing Sciences in Colleges, 17(5), 1–7.

Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent

cognitive styles and their educational implications. Review of Educational Research, 47(1), 1–64.

Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. A. (1971). A manual for the embedded figures tests. Palo
Alto, CA: Consulting Psychologists Press.

572

