
A Learning Support System for Visualizing

Behaviors of Students’ Programs Based on

Teachers’ Intents of Instruction

Koichi YAMASHITAa*, Daiki TEZUKAb, Satoru KOGUREc,

Yasuhiro NOGUCHIc, Tatsuhiro KONISHIc & Yukihiro ITOHc
aFaculty of Business Administration, Tokoha University, Japan

bGraduate School of Integrated Science and Technology, Shizuoka University, Japan
cFaculty of Informatics, Shizuoka University, Japan

*yamasita@hm.tokoha-u.ac.jp

Abstract: In this paper, we describe a learning support system for visualizing the behaviors

of students’ programs and discuss classroom practices utilizing the system. Up to present,

we have held several classes using a program visualization system called TEDViT, which

visualizes the behaviors of teachers’ programs based on teachers’ intents of instruction.

However, TEDViT does not support visualization of students’ own programs; hence,

learners can only observe the behaviors of a given teacher’s program. In this study, we

extended TEDViT to be capable of visualizing learners’ own programs in a drawing style

that reflects the teacher’s intent of instruction. We introduced the extended TEDViT into

three classes and evaluated the robustness and usefulness of the visualizations of learners’

programs. We designed an improvement for our extended TEDViT based on knowledge

derived from these practices. The evaluation results suggested that the extended TEDViT’s

visualizations have a certain degree of robustness and that our approach has some validity.

Keywords: Programming education, program visualization system, domain world model,

classroom practice

1. Introduction

Thus far, several program visualization (PV) systems have been developed to support novices who

are learning programming (Sorva, Karavirta & Malmi, 2013). These systems visualize the data

structures processed by the target programs (i.e. target domain world) in a uniform way and help

learners to understand the targets by making their behavior visible. We adapted a PV system called

the Teacher’s Explaining Design Visualization Tool (TEDViT) (Kogure et al., 2014) and held

several classes using it over the past few years (Yamashita et al., 2016a; Yamashita et al., 2017).

TEDViT allows teachers to provide not only a target program, but also its visualization policy. The

visualization policy is defined by a set of drawing rules, each of which consists of a condition part

representing the drawing timing and an object part representing the object’s attributes, such as type,

position, and color. The teacher can define what objects are visualized and when they are visualized

in the process of program execution by providing the target program and drawing rules to TEDViT.

However, TEDViT does not support visualizations of learners’ own programs. This is mainly

because managing the timing to fire drawing rules is difficult.

Therefore, the aim of this study is to extend TEDViT to be capable of visualizing learners’

own programs in a drawing style that reflects the teacher’s intent of instruction. In our extension, we

take an approach that expresses the condition parts of drawing rules with superficial statuses in the

program’s execution, because the functions of novices’ statements or program code blocks are hard

to analyze automatically. We introduce the extended TEDViT into actual classes and evaluate the

robustness and usefulness of the visualizations of learners’ programs. Through repeated use in

classrooms, we attempt to develop a highly sustainable PV system for use in actual classes. In this

paper, we describe the extended TEDViT that supports visualizations of learners’ own programs and

our three classroom practices with it.

761

Yang, J. C. et al. (Eds.) (2018). Proceedings of the 26th International Conference on Computers
in Education. Philippines: Asia-Pacific Society for Computers in Education

2. Visualization of Student’s Own Program Behavior

TEDViT allows teachers to define the policy for drawing a status of the target domain world based

on their intents of instruction. Teachers can create or edit a configuration file independently from the

target program file. TEDViT interprets such a visualization policy by scanning the configuration file

and then visualizes the target domain world accordingly. The learners can then observe the program

behavior in the target world visualized in accordance with the teacher’s intent of instruction. The

relationships among teachers, learners, and TEDViT, and the extension in this study, are shown in

Figure 1. A configuration file that defines a visualization policy consists of a set of drawing rules,

each of which is a CSV (Comma-Separated Values) entry consisting of a condition part and an

object part. A condition part defines the condition to fire the drawing rule. Teachers can express the

timing of drawing using a conditional equation consisting of a statement ID, variables in the target

program, constant values, and comparison operators. Here, the statement ID is a unique identifier

automatically assigned to all statements in the target program by TEDViT. An object part defines the

operation to edit the target object and the attributes necessary to draw the object.

Figure 1. Relationships among teachers, learners, and TEDViT

In our past practical classes with TEDViT, the teachers defined a total of 725 drawing rules

for 23 target programs, and all of the rules contained conditional equations with a statement ID. This

was because the drawing rules had to be efficacious only for the target program provided by the

teacher. Using a statement ID in a condition part means defining a condition such as “when n-th

statement in the target program is executed.” If the target program were the learner’s own program,

the order and position of the statements would be different according to the learner’s program, even

if the learners’ programs achieved the same result. Thus, when TEDViT visualizes the behaviors of

learners’ programs, conditions with statement ID cannot fire the drawing rule at appropriate time.

To resolve the fundamental problem in drawing management for learners’ code, we thought

it necessary to extend TEDViT to support expressing condition parts with statuses abstracted to the

level of functions, such as “when the indexer of the target array points out of the array range,” rather

than concrete and superficial statuses, such as “when n-th statement is executed.” However, we

thought this would be hard to implement. For the abstract drawing management, analyzing the

provided learner’s program and finding the functions of each code block and data structure are

required. Even expert teachers find it hard to interpret abstract functions in novice learners’

programs because there are many redundancies and errors. Therefore, in this study, we addressed

drawing management for learners’ code by a condition part expressed with concrete and superficial

statuses, based on two approaches.

First, to identify the learner’s statement that achieves the same process as the teacher’s

statement, we extended TEDViT to support following expressions in condition parts:

“onChange(var)” is used to fire the rule when the value of variable var is changed by the statement

execution. “cond(cond)” is used when conditional equation cond is satisfied. Here, the cond is

expressed with variables in the target program and/or constant value. Logical operators including

“AND” and “OR” are supported. “perfect(str)” and “partial(str)” are used when the expression of

the executing statement matches the string str perfectly and partially, respectively. “regexp(ptn)” is

used when the expression of the executing statement matches regular expression pattern ptn.

Second, we placed a restriction on designing exercise questions, making the students

complete the program from the provided template that included definitions of the required variables,

rather than making them develop it from full scratch. In full scratch development, students use an

762

arbitrary number of variables and arbitrary variable names to achieve the target algorithms. Hence,

analyzing correspondences of variables in students’ programs to variables in teachers’ programs is

required. By providing a template, we aimed to fix the number and names of variables, which we

expected to facilitate the production of condition expressions with concrete and superficial statuses.

We believe the restriction on design exercises based on a completion strategy had very little

influence on teachers’ actual classroom designs. Van Merrienboer and Krammer (1987) showed that

learners who learned programming using exercises based on a completion strategy came to develop

better programs than learners who learned using exercises from scratch. We thought that it would

involve little cost to change an exercise from a scratch into a completion problem by removing some

parts of the worked-out programs.

3. Classroom Practices

Based on the approaches described in the previous section, it is practically difficult to achieve fully

robust visualizations for fully arbitrary target programs. An implementation can be as redundant as

one likes. Nevertheless, in actual programming exercises, it is very unlikely that novice learners will

make extremely redundant programs aiming to hurt the robustness of the system’s visualizations.

This means that visualization robustness needs to be evaluated only for learners’ programs written in

actual classes, rather than for fully arbitrary programs. Therefore, we introduced the extended

TEDViT into actual classrooms and evaluated its visualization robustness. We also evaluated the

validity of our approaches based on knowledge derived from practice. In this section, we describe

three practical classes for university students. Table 1 presents a summary of the classes.

Table 1

Summary of the Practical Classes

 Class #1 Class #2 Class #3

No. of participants 59 108 117

Major Business administration Computer science Computer science

Grade Sophomore Freshman Sophomore

Course Programming Algorithms &

data structures I

Algorithms &

data structures II

Material String matching Sorting algorithms Merge sort

3.1 Class #1 (String Matching) and Class #2 (Sorting Algorithms)

Class #1 took place in 2017, incorporated into an actual course called “Programming.” Before the

students worked on the exercise, they heard some instructions on using the extended TEDViT and

explanations of the exercise problem. The exercise problem was to complete a program to judge

whether a given string is a palindrome or not. Before the class, the teacher made the answer program

and defined its visualization policy in the extended TEDViT. He also made the program template by

removing some parts of the answer program. We added a function to hide some parts of the program

visualized in the extended TEDViT, because the teacher asked that we allow the students to compare

two visualizations; one visualization for the behaviors of students’ programs and one for the

behavior of the answer program. This function enabled the extended TEDViT to visualize the

answer program’s behavior without presenting the completed answer program code. During Class

#1, the teacher instructed the students to launch the two processes of the extended TEDViT

simultaneously, one for the students’ program and one for the answer program. He guided the

students to compare the two programs’ behaviors and make the behavior of their programs closer to

that of the answer program.

Class #2 took place in 2017, incorporated into an actual course called “Algorithms and Data

Structures I.” Like in Class #1, the students received some instructions on using the extended

TEDViT and explanations of the exercise problem, and then they worked on two exercises. The first

exercise was to consider the features of the insertion sort algorithm and the quicksort algorithm. The

students were instructed to achieve the objective by observing the behaviors of two programs

763

visualized in the extended TEDViT, changing the initial arrays of both programs to the indicated

three values. The second problem, which was a challenging exercise for students who had finished

the first exercise, was to upgrade the quicksort program provided in the first exercise. The provided

program always chose the last element of the target array as a pivot. The students were required to

implement a program block that chose the element with the second highest (lowest) value among the

first, last, and center element of the target array. They were also required to consider the

effectiveness of the upgrade to pivot choosing by observing the behavior of the upgraded program

visualized by the extended TEDViT.

At the end of each class, we conducted questionnaire surveys to evaluate the robustness and

usefulness of the visualization by the extended TEDViT. Both questionnaires had two questions that

used a five-point scale; they asked “(Q1) how appropriately did the extended TEDViT visualize the

behaviors of your programs?” and “(Q2) how much do you want to use the extended TEDViT in

actual classes?” They also had another question with a free description (Q3), which asked the reason

for the answer to Q2. Table 2 provides a summary of the answers to these questions. For the former

two questions in Class #1, the students who answered positively (a score of 4 or 5) accounted for

49.2% for Q1 and 54.3% for Q2, while the ones who answered negatively (score of 1 or 2) accounted

for 15.3% for Q1 and 13.6% for Q2. For Class #2, the ones who answered positively accounted for

89.7% for Q1 and 84.6% for Q2, while the ones who answered negatively accounted for 5.1% for Q1

and 1.3% for Q2. These results suggest that the extended TEDViT could visualize the behaviors of

students’ programs robustly, and that the students accepted the visualization favorably, in general.

Table 2

Results of the Questionnaire Survey for Class #1 and Class #2

Score N in Q1 (Class #1) N in Q2 (Class #1) N in Q1 (Class #2) N in Q2 (Class #2)

1 0 2 2 1

2 9 6 2 0

3 21 18 4 11

4 20 25 13 39

5 9 7 57 27

For Q3, we found that the numbers of students who answered “understandable/imaginable”

or “difficult/incomprehensible” were relatively high in Class #1. The former positive answers

suggest that the extended TEDViT could have a certain degree of usefulness. We consider the latter

negative answers as being caused by the complicated operations for launching the extend TEDViT.

The students needed to use some CUI operations to launch it, followed by every compilation of their

own program, with which students majoring in business administration are unfamiliar. For Q3 in

Class #2, we found that 35 students answered “understandable,” suggesting that the extended

TEDViT could have a certain degree of usefulness. Moreover, none of the students answered

“difficult/incomprehensible” in Class #2. We consider the reason to be that the participants were

students majoring in computer science, so they were familiar with the CUI operations.

In Class #2, we collected programs from the students who attempted the second exercise.

After the class, the teaching staff evaluated the robustness of the visualizations by verifying those of

the collected programs’ behaviors visualized with the extended TEDViT. The number of students

who performed the second exercise was five. We collected 3 programs from each student, for a total

of 15. The visualization of each program was evaluated in three grades: “no error” if the

visualization was equivalent to that of the teacher’s program; “trivial error” if the visualization had

some errors such that a drawing object was not deleted appropriately, which did not affect the

understanding of the program’s behavior; and “fatal error,” if the visualization had some errors such

as errors in drawing position and highlighting, which affected the understanding of the program’s

behavior. The evaluation results showed that no visualization was graded “no error,” 5 were “trivial

error,” and 10 were “fatal error.” The reasons for these unsatisfactory results could be roughly

classified into two factors: there were some bugs in the extended TEDViT or there were some bugs

in the drawing rules defined by the teacher. The former bugs were relatively uncomplicated, and we

fixed them. The latter bugs were in condition parts written with regular expressions, and arose from

the teacher’s insufficient anticipation of the students’ programs’ variation. For example, although

764

the teacher anticipated the use of “return” in the void function, many students did not use it in their

programs. If we fixed the regular expressions appropriately, all visualizations of the collected

programs could be graded as “no error.”

3.2 Class #3: Merge Sort

Class #3 also took place in 2017, incorporated into an actual course called “Algorithms and Data

Structures II.” Like in Classes #1 and #2, the students heard some instructions for using the extended

TEDViT and explanations of the exercise problem, and then they worked on four exercises. The first

exercise (Ex1) entailed completing the provided template of a merge sort program using the

extended TEDViT. The template was made by removing part (about 10 lines) of the answer program

written by the teacher beforehand. The second and third ones (Ex2 and Ex3) involved considering

the features of the merge sort algorithm by observing the behaviors of the program visualized in the

extended TEDViT and changing the initial array to the indicated one for each exercise. The fourth

one (Ex4) asked them to implement two functions, divide(), which divides the target array, and

merge(), which merges the two targets, using the dividing function mergesort() in the provided

program. Before the class, the teacher made the target program for observation of behavior and

defined its visualization policy in the extended TEDViT, anticipating the students’ program

modifications in the second exercise. During the class, the teacher instructed the students not to

describe statements such as typedef, which was not supported by the extended TEDViT.

In Class #3, we conducted objective evaluations as in Class #2. That is, we collected the

students’ programs for each exercise, then the teaching staff verified the visualizations by the

extended TEDViT and evaluated their robustness. During program collection, we classified a 20%

random sample of all 117 students and collected the programs of 23 sample students, which were

submitted as products. Then, we excluded unfinished programs from the collection, such as those

with compilation errors, and obtained a total of 81 students’ programs. Likewise, in Class #2, the

teaching staff evaluated each program’s visualization by the extended TEDViT using three grades.

Table 3 shows the number of evaluated visualizations in each grade for each exercise.

Table 3

The Number of Evaluated Visualizations of Students’ Programs in Class #3

 Ex1 Ex2 Ex3 Ex4

No error 13 13 13 11

Trivial error 0 0 0 1

Fatal error 8 8 9 5

Total 21 21 22 17

The reasons for the “fatal error” grade could be classified roughly into two factors again: one

was unsupported statements written by some students ignoring the teacher’s instructions and the

other was uncomplicated bugs in the extended TEDViT. For the former, we translated unsupported

statements in the students’ programs into supported statements that had the equivalent function, and

verified the visualizations again. We also re-verified the visualizations after the bug fixes for the

extended TEDViT. Table 4 provides these reevaluation results.

Table 4

The Number of Reevaluated Visualizations with Grammatical Modifications and bug fixes

With grammatical modifications With grammatical modifications and bug fixes

 Ex1 Ex2 Ex3 Ex4 Ex1 Ex2 Ex3 Ex4

No error 19 19 20 14 No error 21 21 22 16

Trivial error 0 0 0 1 Trivial error 0 0 0 1

Fatal error 2 2 2 2 Fatal error 0 0 0 0

Total 21 21 22 17 Total 21 21 22 17

765

From Table 3, we can see about 60% of students’ programs could be visualized

appropriately even if no modifications were made. Furthermore, as seen from Table 4, almost all

students’ programs could be visualized appropriately following our trivial modifications. These

results suggest that the visualizations of the extended TEDViT had a certain degree of robustness.

4. Conclusion

In this paper, we described an approach to extend TEDViT so that it could visualize the behaviors of

learners’ programs. TEDViT is a PV system that allows teachers to provide not only a target

program but also its visualization policy. This feature aims to reflect teachers’ intents of instruction

regarding the visualization of the target program’s behaviors. Because it was assumed that the target

program would always be provided by the teacher, TEDViT was not made to support visualizations

of the behaviors of learners’ programs. To enable learners to observe the behaviors of their own

programs visually, we extended TEDViT to use concrete and superficial statuses of a program’s

execution in drawing rule definitions. It was difficult to make our extended TEDViT fully robust for

visualizations of fully arbitrary target programs. Hence, we evaluated the visualization robustness

using learners’ programs written in actual classes. We described three classroom sessions where we

introduced the extended TEDViT for evaluations of robustness. In the classes, the exercises were

designed based on a completion strategy, where students had to complete the program based on a

provided template that included definitions of the required variables. After each class, we evaluated

the robustness and usefulness of the visualizations by the extended TEDViT using questionnaire

surveys administered to the participants and objective verifications by the teaching staff.

From the results of the questionnaire surveys, we found that many participants accepted the

visualizations by the extended TEDViT favorably and found them helpful when working on the

exercises. From the verifications by the teaching staff, we found that the extended TEDViT could

appropriately visualize the behaviors of learners’ programs in general after some bug fixes to the

system and the drawing rules. These results suggest that the extended TEDViT could visualize the

behaviors of learners’ own programs with a certain degree of robustness. Therefore, we can

conclude that our approach, which reflected teachers’ intents of instruction regarding visualizations

of learners’ programs by using concrete and superficial statuses of the programs’ execution, would

have a certain degree of validity. We expect to achieve further improvements to the robustness of our

approach by continuing the classroom sessions utilizing the extended TEDViT.

Acknowledgements

This study was supported by JSPS KAKENHI Grant Numbers JP16K01084, JP18K11567.

References

Kogure, S., Fujioka, R., Noguchi, Y., Yamashita, K., Konishi, T., & Itoh, Y. (2014). Code reading

environment according to visualizing both variable's memory image and target world's status.

Proceeding of the 22nd International Conference on Computers in Education (ICCE2014), 343-348.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A Review of Generic Program Visualization Systems for

Introductory Programming Education. ACM Transactions on Computing Education (TOCE), 13(4), 15.

Van Merrienboer, J. J., & Krammer, H. P. (1987). Instructional strategies and tactics for the design of

introductory computer programming courses in high school. Instructional Science, 16(3), 251-285.

Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y., Konishi, T., & Itoh, Y. (2016). Practice of algorithm

education based on discovery learning using a program visualization system. Research and Practice in

Technology Enhanced Learning (RPTEL), 11(15), 1-19. doi:10.1186/s41039-016-0041-5.

Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y., Konishi, T., & Itoh, Y. (2017). Classroom practice for

understanding pointers using learning support system for visualizing memory image and target domain

world. Research and Practice in Technology Enhanced Learning (RPTEL), 12(17), 1-16.

doi:10.1186/s41039-017-0058-4.

766

