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Abstract: Final grade scores of students were predicted based on how they accessed 

teaching content provided by an e-learning system, BookRoll. In order to train machine 

learning models, features were designed heuristically, and various machine learning 
methods were trained and compared. The result showed that random forest and AutoML 

performs well. Analyzing trained random forest predictors revealed that time-related 

features contribute significantly to the performance of the regressor.  
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1. Introduction 

 
Predicting the final grade scores of students from how they interacted with an e-learning system is 

important for developing and improving systems for online learning. If some functions in the system 
affect students' final grade scores significantly, it will be worthwhile to put more effort in extending 

those functions. Also, teachers can guide students to use the e-learning system in ways that would 

increase their expected final grade scores. In this work, logs recorded on an e-learning system that 

provides online teaching material, were used to predict the final grade scores of students. The system 
used for logging is BookRoll (Flanagan et al., 2017; Ogata et al., 2017). The data was provided for 

the 5th ICCE workshop on Learning Analytics (LA) & Joint Activity on Predicting Student 

Performance. 

 

2. Methods 

 
Before training machine learning models, we carefully designed features (attributes) that would 

contribute to making good predictions. In addition to features already provided in the data sets, some 
extra features were constructed heuristically. 

Event time was split into parts representing year, month, day, day of the week, and hour 

within the day. This is to see time in different time scales. By counting the number of events 
happened within each time scale, we obtained new attributes representing how often events 

happened in a certain time frame. For example, a feature named "hour_8" represents how many 

times the student accessed the e-learning system between 8 am till 9 am of any day. A feature named 
"day_5" represents how many times the student accessed in day 5 of any month. These features were 

added based on a hypothesis that times that students access the system correlates with how 

motivated or involved they are to the course.  

Similarly, the number of times the student accessed a certain page was turned into a feature. 
For example, "pageno_10" represents how many times the student accessed page 10 of the teaching 

material. This is based on a hypothesis that well-performing students would be checking out more 

relevant or difficult part of the teaching material, whereas less-performing students might be looking 
at less relevant or easier part of the material. 



The number of times the student conducted a specific process is turned into a feature to. For 
example, "processcode_3" represents how many times the student performed the process labeled by 

3. 

After adding these features, we trained machine learning models. We evaluated models with 

different levels of complexity. Specifically, we compared LASSO, Elastic Net, multilayer 
perceptron regressor (MLP), kernel ridge regression, random forest regression, AutoSklearn 

(Efficient and Robust AutoML for Scikit-learn, abbreviated as AutoML), and gradient boosting 

regression. 

 

3. Results 

 
We conducted 3-fold cross-validation for 10 times, using different partitioning each time. Two 

datasets were trained and evaluated separately. For each partition, we trained models using the 
training part (2/3 of the whole data set), then computed RMSE (root mean squared error) for the test 

data part (1/3 of the whole data set) using the trained regressor. 

 

3.1 Dataset 1 

 
Figures 1 and 2 illustrate how final grade scores are distributed. Most students scored between 75 

and 100, indicating much deviation from a fitted Gaussian distribution. This suggests that it might be 

difficult to make predictions based on an assumption that data follows a Gaussian distribution, such 
as linear regression. 

 
Figure 1. Score distribution by a bar graph. (for dataset 1) 

 



 
Figure 2. Score distribution (histogram) and fitting by a Gaussian distribution. (for dataset 1) 

 
Learning curves for different machine learning models are illustrated in Figure 3. Validation 

scores significantly lower than training scores indicate overfitting occurring in some methods. Since 

validation scores approach training scores as the number of training sample increases, it suggests 

that more complex models such as AutoML may perform even better as the number of samples is 

increased. 



 
 

Figure 3. Learning curves of compared methods for training and test data sets. (for dataset 1) 

 
Distributions of RMSE (root mean squared error) for dataset 1 is indicated in Table 1 and 

Figure 4. They are obtained by 30 validations, resulting from performing 3-fold cross-validation 10 

times. 

 
  Table 1: RMSE mean and standard deviation for methods compared  

  method      mean   std.dev. 

LASSO   141.7914  200.6841 

Elastic Net   137.4087  192.9349 

MLP regression    70.7624    50.5348 

kernel ridge regression   54.7972    26.6537 

random forest regression    23.4546    15.7610 

AutoML      23.4572   15.4890 

gradient boosting    25.7972   16.3673 

 



 
Figure 4. Distributions of RMSE over 3-fold cross-validation using 10 different partitions. 

Boxes represents the lower to upper quartile values of the data, with a red line at the 

median. The whiskers show the range of data. (for dataset 1) 
 

After training random forest, features that contributed more were ranked using 

Gini-importance values. The result is indicated in Figure 5. It shows that "hour_17" feature 
contributed significantly, which indicates that the number of accesses that a student makes at 5 pm 

greatly affects how well the student perform in terms of the final grade score. The random sequence 

of characters ranked third in Gini-importance is an ID for a book that students could access from the 
e-learning system.   

 
 

Figure 5. Features sorted by Gini-importance, indicating how much each feature contributed 

to making predictions in random forest. (for dataset 1) 

 



3.2 Dataset 2 

 
Figure 6 illustrates the distribution of final grade scores for dataset 2. It is less concentrated around 
score 100 when compared to dataset 1. However, it is still not well fitted to a Gaussian distribution, 

indicating simple models like linear regression would not be appropriate. 

 

 
Figure 6. Score distribution (histogram) and fitting by a Gaussian distribution. (for dataset 2) 

 
Figure 7 illustrates learning curves for dataset 2. Like in dataset 1, validation scores are 

sometimes much lower than training scores in some models. It suggests that with more data, 
complex models may have validation scores closer to training scores, resulting in better predictions. 

 

 

 



 
Figure 7. Learning curves of compared methods for training and test data sets. (for dataset 2) 

 
Distributions of RMSE (root mean squared error) for dataset 2 is indicated in Table 2 and 

Figure 8. They are obtained by 30 validations, resulting from performing 3-fold cross-validation 10 

times. 

 

Table 2: RMSE mean and standard deviation for methods compared  (for dataset 2) 

  method      mean   std.dev. 
LASSO    1238.1671 5716.8297 
Elastic Net                 995.1362 4514.8347 

MLP regression            95.9370   130.1382 

kernel ridge regression           50.0973     26.7959 
random forest regression     14.9165     10.0090 

AutoML       14.3660       9.4390 

gradient boosting      13.3342       9.9282 

 

 

 



Figure 8. Distributions of RMSE over 3-fold cross-validation using 10 different partitions. 
Boxes represents the lower to upper quartile values of the data, with a red line at the 

median. The whiskers show the range of data. (for dataset 2) 
 

Features that contributed according to random forest are indicated in Figure 9. This time, the 

ID of a book contributed to most, suggesting referring more or less to a specific book in the 

e-learning system greatly affected how well the student performs in terms of the final grade score. A 
time feature "hour_5" was also important, suggesting accessing at a certain time of the day also 

affects the student's performance. 

 
 

Figure 9. Features sorted by Gini-importance, indicating how much each feature contributed 

to making predictions in random forest. (for dataset 2) 

 

4. Discussion 

 
Possibly due to the size of datasets, AutoML didn't perform any better than random forest or gradient 

boosting. Using more data might make these complex models more competitive. Random forest 

performed best for dataset 1, and gradient boosting did so for dataset 2. These are ensemble methods, 
showing their effectiveness with datasets of this size. The difference in the performance of two 

models between datasets may result from distributions of data. In order to explain it, we need to 

conduct further analysis on the distributions. 

Features that contributed most to making predictions included ones regarding times, 
representing at which time of the students were accessing the e-learning system. Features 

representing which part of the teaching material were also important. 

RMSE obtained for dataset 2 is as low as 13.34 where the grade ranges between 0 and 100, 
indicating using log data from an e-learning system can be an effective way of predicting students' 

performance. One must note, however, that in the datasets used for analysis, scores are mostly above 

70, predictors at this moment may not be useful for predicting how well a moderately performing 
student would perform among others. On the other hand, it could be useful for detecting students that 

will perform significantly worse than others. 

 

 



5. Conclusion 

 
One interesting observation obtained from this analysis is that at what time (hour) of the day students 
access the e-learning system greatly contributes to predicting the final grade score of students. It 

may suggest that this feature represents a student's attitude and motivation toward the course. The 

results suggest that analyzing log data can contribute to making e-learning better. 
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