

A Flexible System and Data Model for the
Representation and Management of PBL Scripts

Disi Wanga*, Yongwu Miaoa, Ulrich Hoppea & Mohammed Samakab
aDepartment of Computational and Cognitive Sciences, University of Duisburg-Essen, Germany

bComputer Science and Engineering Department, Qatar University, Doha, Qatar
*wang@collide.info

Abstract: As problem-based learning (PBL) is becoming more and more popular, there is also a
growing interest in developing and using technologies in the implementation of PBL. However,
teachers may have difficulties to design a pedagogically high-quality and technically
executable, online or blended PBL process on their own, because they lack appropriate
expertise in learning theories and design methods as well as a deeper understanding of the
potential affordances of technologies. From this premise, we are committed to developing and
testing methods and tools to support the design and delivery of online or hybrid PBL processes
with high flexibility and a low threshold of usage requirements. As a first milestone towards this
goal we have developed a web-based PBL authoring tool for facilitating teachers to design,
represent, understand, communicate, customize and reuse online or blended PBL processes.
This paper presents a technical approach to the PBL authoring tool and focuses on supporting
the representation and management of PBL scripts, computational descriptions of PBL process.
In comparison with other tools and technical approaches, it is concluded that a combined use of
semi-structured data management and a unified data format appears to be a promising approach
to effectively and efficiently support the representation and management of PBL scripts.

Keywords: PBL, learning design, PBL authoring tool, PBL script, semi-structured data, data
management, graphical representation, web-based application

1. Introduction

Problem Based Learning (PBL) is a learning method to structure the curriculum in such a way as to
involve confronting students with problems from practice as a stimulus for learning (Boud & Feletti,
1998). It engages learners in an active, collaborative, student-centered learning process that develops
critical thinking, problem-solving, team-work, and self-directed learning abilities needed to meet the
challenges of life and career in our increasingly complex environment (Hmelo-Silver & Eberbach,
2012). PBL has been successfully used in various different domains and its benefits have been largely
demonstrated (Savery, 2006). The application of new technologies such as Web 2.0 and virtual
collaboration environments can enrich and improve implementations of PBL (Kaldoudi et al., 2008).
Nevertheless, to achieve its full power, an online or blended PBL process needs to be well designed, and
a sound online or blended PBL process may be a collaborative product of years of research, application,
assessment and redesign. Usually, designing such a PBL process is an intensively mental work and an
implicit process. Traditionally, the teacher individually constructs a PBL design based on personal
experience and represents it in natural language as a course plan or lesson plan on paper. Teachers may
have neither appropriate expertise in learning theories and design methods nor a deep understanding of
the potential affordances of technologies. They lack guidance to design a high-quality and
technology-supported PBL plan in a specific context in order to benefit from PBL and new
technologies.

Our general goal is to study and develop methods and tools to support the design and delivery of
online or hybrid PBL processes in an effective, efficient and flexible manner. As a milestone to achieve
this goal we developed a web-based PBL authoring tool that aims at facilitating teachers in design,
representation, understanding, communication, customization and reuse of online or blended PBL
processes. We try to help teachers to make the implicit design process explicit in order to improve
design quality and to represent a traditionally informal description as a formal model for scaffolding

266

and orchestrating a PBL process by the computer. This paper presents our technical approach to develop
a web-based PBL authoring tool. We claim that semi-structured data management and a unified
semi-structured data form can make up an effective combination to technically support the
representation and management of PBL design.

The rest of the paper is organized as follows: Section 2 describes a typical PBL process script
represented in natural language and characterizes a PBL design. Section 3 presents the implementation
and the functionalities of the PBL authoring tool to give an impression of our tool. Section 4 identifies
technical requirements that how to represent and manage PBL scripts in order to implement the tool.
Section 5 compares our tool with related work on the aspects of user interface and data management.
The final section summarizes our work and indicates the future work.

2. Requirements to Represent and Manage PBL Scripts

PBL can be conducted in a number of ways. There are different PBL models such as McMasters PBL
model (Woods, 1996), the Maastricht “seven jump” model (Barrows, 1996), the Aalborg “Problem
Oriented Project Pedagogy (POPP)” model (Dirckinck-Holmfeld, 2002), Mills “five-stage” model
(Mills, 2006), and SALFORD model (McLoughlin & Davrill, 2007). According to concrete situations
such as the learners’ prior domain knowledge and PBL skills, the topics to be learned and the problem
used to drive learning, and the availability of learning technologies, a PBL process can be designed to fit
the specific learning context. In order to illustrate how a PBL process is usually described informally in
natural language, we take a segment of “seven-jump” model as an example through this paper from
(Maurer and Neuhold, 2012):

“To get students started on a certain topic, they are confronted with an assignment that … outlining
the problem or asking for a specific task to complete. … Students are supposed to have read and
looked at this assignment already before their tutorial (or during the break), so that they can start
with clarifying terms and concepts. This first step guides students mentally into the topic, and by
discussing unknown words or concepts it is ensured that all students understand the text as it stands
and that the group shares ideas about illustrations that might be part of the assignment. This first step
provides a common starting point and leads the group into the topic. In the next step, the whole
group agrees on the formulation of the problem statement that frames the whole assignment,
provides a title for the session, and makes the group agree on what the general impetus of the
assignment is about. Problem statements can take the form of more traditional titles, but are
sometimes also formulated as broader research questions or provoking statements. The problem
statement should trigger the next step of the brainstorm. … Everything is allowed during this step,
and ideas are collected unquestioned at the whiteboard (i.e. there are no wrong ideas; everyone
should be allowed to follow her/his own ideas). … The outcome of the brainstorm is noted on the
whiteboard by the secretary that during the next (fourth) step should be categorized and structured
by the students. … but by structuring the brainstorm students categorize keywords that fit together
and in this way they find common patterns that in the next step will allow for the formulation of
specific questions. As last step of the pre-discussion, students agree on the formulation of common
learning objectives, by referring to the brainstorm and the now structured collection of ideas that
they have noted on the whiteboard. …”

This PBL model consists of several steps (marked in bold, here only shows five steps for the

reason of space) which includes clarifying terms and concepts, formulation of the problem statement,
idea brainstorming, categorizing and structuring ideas, and formulation of learning objectives, etc. In
each step one or several activities are performed by the facilitator, group, individual learner or
stakeholders, e.g. scientific staff. For instance, according to the quoted test, after a problem statement
was formulated in step 2, the third step idea brainstorming will be triggered. Assume that this learning
model will be performed by a class which is divided into 3 groups and instructed by one facilitator, then
in this step, a specific activity sequence could be 1) based on the problem statement formulated in the
previous step, each group creates a basic hypothesis; 2) from this basic hypothesis each group proposes
their tentative solution; 3) the facilitator views these solutions and give his or her feedback. Each group
will improve their tentative solutions based on the feedback. In this step, there are some artifacts will be
produced: three groups of basic hypotheses, three groups of tentative solutions and the facilitator’s

267

feedback. All this work could be carried out by using an (online) whiteboard. Figure 1 illustrates the
process above.

Figure 1. Structure demonstration of a PBL process.

As it is shown in the figure 1, there are several top level steps in the left, which is also called

phases. The phases have a process sequence from top to bottom. Then in each phase, idea
brainstorming for instance, there is a second level of description, or phase internal definition. Teacher
needs to organize actors first and then assign actors to different activities. Some activities will produce
artifacts or need learning resources. The activities are also under a process sequence.

Existing ICT applications for PBL still lack flexibility and usability/understandability by teachers
who are not PBL experts. Either some applications are easy to use because they have well-designed
PBL process pattern inside, e.g. STELLAR (Hmelo-Silver et al., 2009) and ePBL (Ali & Samaka,
2013), but too rigid to apply different PBL models; or some applications are flexible enough, but
difficult for teachers who lack a deep understanding of PBL processes. For example, teachers need to
figure out which activities are appropriate for a certain phase; what kinds of artifacts should be there as
temporary outcome or final outcome for certain phase and so on. Since process scripts are usually just
embedded in teacher’s practice and they tend to be implicit. Thus in educational practice, PBL
processes mostly are executed only based on a social protocol and a manual configuration and
management of various application tools and digital or non-digital artifacts. As a consequence, there is
a need to support teachers in representing PBL processes more explicitly and formally.

In order to overcome these barriers and to enable computerized support of different models of
online PBL, one possible way is to adopt the concept of CSCL script. As we know, this concept has
been used to structure computer supported collaboration (Dillenbourg, 2002). It has been considered an
effective means of facilitating specific interaction patterns in CSCL situations (Fischer et al., 2007).
Numerous approaches to representing CSCL scripts and CSCL scripting languages have been reported
in the literature (e.g. Dillenbourg, 2002; Miao et al., 2005; Miao et al., 2007; Dillenbourg &
Tchounikine, 2007; Harrer et. al. 2007). Our approach is particularly inspired by Miao et. al. (2000),
and we proposed our PBL specific scripting language, namely PBL scripting language. Rather than
using generic vocabularies, our scripting language only relies concepts that teachers use daily to
describe PBL processes such as problem engagement, identify learning issue, generate solutions,
evaluate acquired knowledge, etc. Also, as a kind of Domain Specific Modeling Language (DSML),
these vocabularies and rules are specified by PBL domain experts taking into account different PBL
models. In this way, teachers can be enabled to make use of different PBL models to create different but
correct and computer understandable PBL scripts. As a result, teachers’ mental scripts become
representable, manageable and runnable online or as blended PBL course plans.

Therefore, there is a requirement to find a way of providing a web-based application which is
aimed at empowering teachers to represent, improve, understand, share, reuse and manage online or
blended PBL scripts in a design-time basing on the applying of our PBL scripting language.

3. A Web-based PBL Authoring Tool

268

In order to fulfill the requirement mentioned above, we have developed a web-based PBL authoring tool
whose basic concept has already been introduced and evaluated. Miao et al. (2013) provide evidence
that this tool is understandable and usable by teachers to develop online PBL course plans. Taking up
the example in section 2, figure 2 shows the three major User Interface elements of this tool. They
separately represent the organization design UI, the script level design UI and the phase level design UI.
The most important functional area is the middle area which contains, from left to right, 1) script file
management panel (for scripts management, sharing, reusing, etc.), 2) meta-type pool (which provides
corresponding meta-types for different types of edit-spaces according to the PBL scripting language
meta-model), 3) graphical script edit-space and 4) property panel.

Figure 2. User interfaces of actor organization design, script level design and phase level design of PBL

script in the PBL authoring tool.

Specifically, in the organization design, teacher can drag the actor meta-type icon from the

meta-type pool and then drop it into the edit-space to create an actor node. Then the teacher will be
asked to determine its type. This ensures that the node is appropriate for correct PBL process as well as
can be understood by computer. According to the definition of PBL scripting language the type of actor
could and only could be an individual, a single group or multiple groups. Teacher just needs to choose
one to define it. For example in the organization design UI, an individual node is crated and named as
Facilitator, a multiple groups node is crated and named as Class (in the property panel we can see the
minimum participants of each group is 2, maximum is 4, and so further). Teacher can also create
connections between them to define their relations. The organization can be shared by multiple PBL
processes.

After an organization is defined, teacher can begin to define the core part of a PBL process: script
level process and phase level process. Almost the same to the way of designing organization, teacher
can also simply by dragging, dropping, choosing, editing properties, connecting, etc. to design these
two levels of process. But compared to the organization design, there are 3 other important points need
to be emphasized. 1) There are more meta-types which include phase, activity, resource, tool and
artifact generated according to our language meta-model to the meta-type pool while in the
organization design there is only actor. Actually, the process of creating these types (including actor) of
nodes on the edit-space is the process of instantiating node types defined in the language meta-model to

269

node instances. In other words, teacher just needs to instantiate the meta-types instead of designing
from scratch by themselves. This mechanism ensures that the design of script is both flexible and
responsible (Wang et al., 2014). As it is shown in the script level UI of figure 2, the node Idea
brainstorming is based on the type Idea Generation. Idea Generation is not defined by teacher but by
expert. So that when teacher designs the internal structure of the Idea brainstorming node (phase level
design), all available node types and nodes’ properties under this phase are only the appropriate types
and properties for this phase according to the meta-model’s specification. For example, when teacher
wants to create an activity, the only options are Offer conjecture, Create hypothesis, Propose tentative
solutions, etc. Or when teacher wants to create an artifact, only Hypothesis, Solution, etc. can be chosen.
Inappropriate node definition will be avoided. 2) The types of actor node are the nodes defined in actor
organization, but with corresponding extension. For example, since there is a multiple groups type node
Class created, when teacher drags an actor into the edit-space, a list which contains All members in
Class, Each member in Class, All groups in Class and Each group in Class will be generated for
choosing. So in the phase level design UI, an Each group in Class actor node is there as an example.
Connected this node, there is a Create hypothesis node. In property panel of this node, for example,
teacher can choose collaboratively as the Class’ Action mode, and let each group in turn perform the
activity. Each group will synchronously use whiteboard to generate their Basic hypothesis within 30
minutes. 3) Except there are fixed properties for each node in the script and phase design level, it is
possible to add new custom properties into the property panel, because the property requirement in real
world is always uncertain. As you can see there is an A custom prop. at the bottom line in the property
panel in the PBL phase level design UI. It is achieved through extending our scripting language
meta-model by experts, rendered in the script design UI, which is used to save, retrieve more
information to get higher expression ability.

Figure 3. The textual output of the graphical designed PBL script.

When teacher finishes his or her design, a graphical PBL script can be exported as a complete

textual script. Figure 3 shows the textual output of the example used in figure 2. Notice that if the
teacher did not specify the Goal or Description, etc. the tool will automatically generate a default
general definition based on the language meta-model and the node type chosen by the teacher at
design-time. In this output, the top level contains the phases; then each phase contains activities (for
saving space and as an example, there is no internal definition in phase 1 and 2). In phase 3, Idea
brainstorming, we can see the activities inside. A summary generated by the tool for each activity
according to which actor, resource, artifact, etc. it connects and what property values are set. For
example the generated summary of activity 3.1 Create hypothesis is: “In this step, with learning
resource Formulated problem statement, Each group in Class collaboratively in turn synchronously
act(s) activity Create hypothesis in classroom with shared screen and PCs by using whiteboard to
generate artifact Basic hypothesis for the next activity. This activity must be done in 30 minute(s). ”

270

This proves that the tool has already understood what the teacher’s script means. So interoperating the
graphical script for other run-time learning systems, e.g. IMS-LD players, becomes possible.

4. An Approach of Supporting the Representation and Management of PBL Scripts

The previous section has given an initial impression of our approach. But to actually implement it,
several technical problems need to be overcome: 1) How to support this kind of unified manner to
represent actor organizations and the processes? Because the heights of the script document tree could
be greater than 1 or 2 as the example. The degrees of the sub-trees could also be greater than 5, 7 or 9 as
the example. 2) How to effectively manage (save, retrieve and compute) the graphical scripts? The
saving/retrieval includes saving/retrieving all the nodes, saving/retrieving (custom) properties of every
node, saving/retrieving all the relations between the nodes, saving/retrieving the multi-levels structure;
the computing includes transforming graphical scripts to complete textual documents. This section will
present a flexible system and data model approach to overcome these problems.

4.1 The Implementation Concept

Although the multi-levels structure of a PBL script is semi-structured, which has uncertain height and
degree, it has a special hierarchical characteristic. That is, different level is for definition, same level is
for relation. For example, the script level is the general process definition of a script divided by phases;
the phase level is the detailed definition of each phase. In contrast, the script level defines the relations
between phases; the phase level defines the relations among activities, actors, etc. Similar, if one wants
to give more fine-grained definition for the Class, one can also define a lower level for it. Therefore, the
edit-space can be designed to support the design of a whole PBL process iteratively. Each edit-space
represents the definition of only one upper layer node. Each definition is a directed graph that consists
of nodes and connections. Figure 4 illustrates this kind of iterative representation from two aspects. The
edit-space 1 is for designing the phase’s sequence for example. After a phase was defined it can be
opened into a new edit-space. Similar to the first, in the edit-space 2, activities, resources, tools, actors,
artifacts and their relations can be defined. If required, a third level of edit-space can be opened.
Therefore a process script even if with infinite height and degree can be defined. Since manipulation
requirement of each level is similar, the functionalities required for each edit-space are similar too.

Figure 4. Iterative representation concept of a PBL process in multi-level edit-spaces

Actually, database can be also designed to save the definitions in each edit-space iteratively in

order to save infinite height and degree of PBL scripts. Because there are only finite meta-types of
nodes in the PBL scripting language, which only includes phase, activity, resource, tool, actor and
artifact, and nodes in edit-space are just the instances of those meta-types, all nodes can be iteratively
saved in their own meta-types of collections. Relation connections among nodes are seen as connection
type instances which can be saved in a connection collection. Figure 5 illustrates this kind of storage
approach. Each node has a definition id field as a pointer points to another edit-space; each edit-space
has a segment id to let the nodes or connections know where they locate. Nodes and connections of
different edit-spaces from different scripts are scattered stored in their own meta-types of collections.

The retrieval of a definition is just to find all the nodes and connections where their segment ids
equal to the edit-space’s segment id. Then the data can be directly sent to client side without any logical
calculation. Basing on their graphic coordinate values all nodes and connects will be correctly rendered

271

on edit-space. Because the nodes and connections as minimum units are stored separately, it shows
several benefits: 1) It is very effective to add, remove, update and find node whenever where it is in one
or many PBL scripts. When teacher edits a node or connection, any change can be saved without
involving any other nodes or connections. So high computation cost in updating script is avoided. 2) It
is very easy to handle the change of process structure. Because the node definitions are not really
connected to each other, the change of structure only needs to change the pointer value. This benefit
make it is possible to effectively reuse and share any levels of sub-trees of any script. When teacher
wants to view the complete script, all nodes and connections can be easily retrieved because all of them
whom belongs one complete script have a same script id. The only additional thing is that before a
complete script is sent back to client, a semantic engine will organize them into a correct order.

Figure 5. The storage concept of the PBL script

4.2 Combined Use of Semi-structured Data and Unified Data Format

The previous section has elaborated the implementation concept of representing and managing the
semi-structured script data, but to technically implement it is another challenge. The following facts
must be considered: 1) Not only the structure itself of PBL script is semi-structured, but also the node
data itself is semi-structured. For example, as mentioned before, node can have custom fields. The data
type of a field could be string, array or others. Figure 6 shows this characteristic. In comparison to
activity Propose tentative solutions, the custom fields of activity View solutions may be more
complicated, if it needs an array to store the values for a drop-down list of a combo box. 2) As a
web-based application, to maximally avoid browser compatibility issues, we need to use pure
JavaScript to develop the rich graphical client.

Because the Node.js can be chosen as our web server, we can use JavaScript to program both
client side and server side. Figure 7 shows the system architecture from the perspective of data handling.
Since the client side and sever side of the system are both built by using JavaScript and JSON is the
object notation of JavaScript; also because we can use MongoDB as our system database and the data
persistence format in MongoDB is JSON (or BSON1), the data interchange format inside the whole
system can be unified as JSON object. As we know, JSON is an ideal data-interchange language for
representing semi-structured data. Therefore the node/connection objects in the system could be simply
as JSON objects. Consequently, on the one hand, client side and server side can communicate each
other directly through JSON object (after serialization). In client side, nodes and connections can be
directly rendered to edit-space or sent back to server side without any format transformation. Also
without any transformation, server side can directly process the nodes or connections from client side.
On the other hand, data from client side can be stored inside the database directly. Even if there are new

1 Short for Binary JSON, is a binary-encoded serialization of JSON-like documents.

272

custom attributes, such as string or array fields, which are customized added, client and server side
JavaScript interpreter and MongoDB can still handle and store them natively.

Together with using pure JavaScript for the client UI, Node.js as the web server and MongoDB
for the data persistence, JSON becomes a natural choice as a unified data format in our whole system.
Combined with the implementation concept for handling the semi-structured process descriptions, all
the requirements for the representation and management of PBL scripts are met.

Figure 6. Custom property in node

Figure 7. System architecture from the

perspective of data handling

5. Related Work

Generally speaking, currently there are two kinds of implementation that can flexibly support PBL
design: IMS-LD authoring tools and the LAMS (Dalziel, 2003). For IMS-LD authoring tools, there are
Reload (Reload 2005), MOT+ (Paquette, et. al, 2006), ASK-LDT (Karampiperis & Sampson, 2005)
CopperAuthor (CopperAuthor 2005) and CoSMoS (Miao, 2005). These tools are very flexible to
represent and support the design of different learning process models and output the models as Unit of
Learning (UoL) packages. The packages can be interpreted by IMS-LD run-time applications, such as
CopperCore player (Martens & Vogten, 2005) and SLED (McAndrew, Nadolski & Little 2005). All
these tools are general learning design tools; they have the capability of supporting PBL design. For the
LAMS, a study has shown that it also can be used for PBL design (Richards & Cameron, 2008).

However, all of them have some shortcomings in term of supporting PBL design. From the
perspective of supporting visual learning design, IMS-LD authoring tools and LAMS misses the
capability of facilitating teachers in developing sound PBL process since they are too general and not
PBL domain specific. From the perspective of utilizing Web technologies, these tools came about by
adopting traditional software development concept, most of them are desktop applications. As we know,
desktop applications have high maintenance cost, are not anywhere available without pre-installation,
are not cross-platform (if they are not on the top of Java) and so further. From the perspective of data
management approach, existing applications store learning design artifacts either by using traditional
relational database or directly as XML files. Relational databases are good at data storage and querying,
but they cannot manage this kind of semi-structured data well since they are relational and not schema
free. XML file is a kind of ideal media for storing this kind of semi-structured data; one drawback is that
it is not ideal for data manipulation, such as partial update, search, etc. which will lead to considerable
computational overhead in server side. Although there are some combination solutions to manage XML
documents through relational database, XML queries are still inefficient (Shanmugasundaram, et. al.
2008).

6. Summary and Future Work

PBL is a kind of high collaborative learning process with a distinctive pedagogy, therefore there are
difficulties in designing the process script, which include designing actor organization and designing
learning process. Thus an extended CSCL scripting language, the PBL scripting language, is developed.

273

To easy the applying of the language in Web 2.0 ear, we developed a web-based PBL authoring tool to
provide a rich and intuitive representation for helping design any kind of PBL scripts of any kind of
models. Our former pilot study (Miao et al., 2013) has shown that the difficulties to design and delivery
pedagogically high-quality, human readable, reusable, sharable and computer-executable, online or
blended PBL process are reduced as intended. Our tool has been implemented based on the premise that
there are two common dimensions of semi-structured characteristics inside PBL scripts. One is from the
point of view of the scripts; the other is from the point of view of a single node/connection inside scripts.
From the first dimension, if we see a script document tree from root to leaf, the sibling nodes and
relations are the definitions of its upper level parent node. That is, nodes (connections) are used to
define node; if we only focus on one sibling level, horizontally it is just about the definition of the
relations among the sibling nodes. The sibling nodes do not define each other. So by iteratively doing
these two things, any PBL script can be defined, regardless how complicated an organization or a
learning process is. From the second dimension, we use JSON as a unified data process and storage
format. Since JSON format is designed to represent semi-structured data, the uncertainty of node’s or
connection’s structure can be processed. In order to effectively implement these two dimensions of
design as a web-based application, we use JavaScript to program both client side and server side. In case
of storing and retrieving the JSON data, we use MongoDB as database, so that all the semi-structured
characteristics of the two dimensions can be effectively handled. At last we also discussed some other
related work. In term of user interface and data management, other work more or less has their
drawbacks. Therefore we conclude that a combined use of semi-structured data management and a
unified data format appears to be a promising approach to effectively and efficiently support the
representation and management of PBL scripts.
 This paper illustrates an approach to design and implement a web based authoring tool to help
teachers represent and manage their PBL mental scripts as graphical scripts. And then the graphical
scripts can be transformed into textual scripts or learning systems executable scripts. Our future work
includes two directions: one is to make these transformation steps automatically. That is, extract process
directly from existing semi-structured textural scripts, and then store them in system, represent them by
our graphical user interface and transform them to other learning systems; the other is to develop our
own specific PBL run-time learning environment, so that we can provide an integrated way to test and
run the PBL scripts for both teachers and learners.

Acknowledgement

This paper was made possible by NPRP grant # NPRP 5-051-1-015 from the Qatar National Research
Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the
authors.

References

Ali, Z., & Samaka, M. (2013). “ePBL: Design and Implementation of a Problem-based Learning Environment,”

Proc. of 2013 IEEE Global Engineering Education Conference (EDUCON), 1209-1216, Berlin, Germany.
Barrows, H. S. (1996). Problem-based learning in medicine and beyond. In L. Wilkerson & W. H. Gijselaers

(Eds.), New directions for teaching and learning: Vol. 68. Bringing problem-based learning to higher
education: Theory and practice (pp. 3-13). San Francisco: Jossey-Bass.

Boud, D., & Feletti, G. (1998). The challenge of problem-based learning. London: Kogan Page.
CopperAuthor (2005). CopperAuthor Learning Design editor, retrieved October 27, 2005 from

http://sourceforge.net/projects/copperauthor/.
Dalziel, J.R. (2003). Implementing learning design: the Learning Activity Management System (LAMS), Interact,

Integrate, Impact, 593–6, Proceedings of the ASCILITE conference. Available online at:
http://www.ascilite.org.au/conferences/adelaide03/docs/pdf/593.pdf, last accessed 25 May 2014.

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional
design. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL? (pp. 61–91). Heerlen, The
Netherlands: Open Universiteit Nederland.

Dillenbourg, P., & Tchounikine, P. (2007). Flexibility in macro-scripts for computer-supported collaborative
learning. Journal of Computer Assisted Learning, 23, 1–13.

274

Dirckinck-Holmfeld, L. (2002). Designing Virtual Learning Environments Based on Problem Oriented Project
Pedagogy. In L. &. Dirckinck-Holmfeld & B. Fibiger (Eds.), Learning in Virtual Environments (pp. 31-54).
Frederiksberg C: Samfundslitteratur Press.

Fischer, F., Kollar I., Mandl, H., & Haake, H. M. (2007). Scripting computer-supported collaborative learning:
Cognitive, computational and educational perspectives. New York: Springer.

Harrer, A., Malzahn, N., & Hoppe, U. (2007). “Graphical Modeling and Simulation of Learning Designs,
Supporting Learning Flow through Integrative Technologies,” in T. Hirashima and U. Hoppe and S. Young
eds. Frontiers in Artificial Intelligence and Applications, Vol. 162. IOS Press, Amsterdam.

Hmelo-Silver, C.E., & Eberbach, C. (2012). Learning theories and problem-based learning. In S. Bridges, C.
McGrath, & T. Whitehill Eds. Researching problem-based learning in clinical education: The next
generation, pp. 3-17, New York: Springer.

Hmelo-Silver, C.E., Derry, S.J., Bitterman, A., & Hatrak, N. (2009). Targeting Transfer in a STELLAR PBL
Course for Preservice Teachers, The Interdisciplinary Journal of Problem-based Learning, 3(2), 24–42.

Kaldoudi, E., Bamidis, P., Papaioakeim, M., Vargemezis, V. (2008). Problem-Based Learning via Web 2.0
Technologies. 21st IEEE International Symposium on Computer-Based Medical Systems, pp.391-396.

Karampiperis, P., & Sampson, D. (2005). Designing learning services for open learning systems utilizing
Learning Design. In Uskov, V. (Ed.) Proceedings of the 4th IASTED International Conference on
Web-based Education, Grindelwald, Switzerland: ACTA Press, 279-284.

Martens, H., & Vogten, H. (2005). A reference implementation of a Learning Design engine. In: Koper, R. &
Tattersall, C., Learning Design: A Handbook on Modelling and Delivering Networked Education and
Training (pp. 91-108). Berlin-Heidelberg: Springer Verlag.

Maurer, H., & Neuhold, C. (2012). “Ways of Knowing, Ways of Learning”. Paper prepared for the Higher
Education Academy Social Science Conference, 28 - 29 May, 2012, Liverpool, UK.

McAndrew, P., Nadolski, R., & Little, A. (2005). Developing an approach for Learning Design Players. Journal
of Interactive Media in Education, 2005/14. Retrieved November 21, 2006, from
http://www-jime.open.ac.uk/2005/14/.

McLoughlin, M., & Davrill, A. (2007) Peeling back the layers of learning: A classroom model for problem-based
learning, in Nurse Education Today, 27(4), May 2007, Pages 271-277.

Miao, Y. (2005). CoSMoS: Facilitating Learning Designers to Author Units of Learning Using LD. In: Towards
Sustainable and Scalable Educational Innovations Informed by the Learning Sciences, Proceedings of the
13th International Conference on Computers in Education, 275-282, Singapore, IOS Press.

Miao, Y., Harrer, H., Hoeksema, K., & Hoppe, U. (2007b) "Modelling CSCL Scripts: A Reflection on Learning
Design Approaches". a book chapter in Fischer, F., Kollar, I., Mandl, H., & Haake, J.M. (Eds.) Scripting
Computer-Supported Collaborative Learning: Cognitive, Computational and Educational Perspectives,
117-135, Springer.

Miao, Y., Hoeksema, K., Harrer, A. and Hoppe, U., (2005). CSCL Scripts: Modeling Features and Potential Use.
Proceedings of Computer Supported Collaborative Learning (CSCL’ 05) conference, pp. 423-432, May 30
– June 4, 2005, Taipei, Taiwan.

Miao, Y., Holst, S., Haake, J.M., & Steinmetz, R. (2000b). PBL-protocols: Guiding and Controlling Problem
Based Learning Processes in Virtual Learning Environments. In: Proceedings of the Fourth International
Conference on the Learning Sciences (ICLS’ 2000), pp. 232-237. June 14-17, 2000, Ann Arbor, U.S.A.

Miao, Y., Samaka, M., & Impagliazzo. (2013). Facilitating Teachers in Developing Online PBL Courses, Proc.
IEEE TALE, Bali, Kuta, Indonesia, August 26-29 2013, pp. 454-459.

Mills, D. (2006). Problem-based learning. The Higher Education Academy, Sociology, Anthropology, Politics
(C-SAP).

Paquette, G., Léonard, M., Ludgren-Cayrol, K., Mihaila, S., & Gareau, D. (2006). Learning Design based on
Graphical Modelling. Educational Technology & Society, 9(1), p. 97-112.

Reload (2005). Reusable e-Learning Object Authoring & Delivery Project, retrieved on October 27, 2005 from
http://www.reload.ac.uk/.

Richards, D., & Cameron, L. (2008). Applying Learning Design concepts to problem-based learning In L.
Cameron & J. Dalziel (Eds), Proceedings of the 3rd International LAMS & Learning Design Conference
2008: Perspectives on Learning Design. (p.p. 87-96). 5th December 2008, Sydney: LAMS Foundation.

Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal
of Problem-based Learning, 1, 9-20.

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., & Naughton, J. (2008). Relational databases for
querying xml documents: Limitations and opportunities.

Wang, D., Miao, Y., Hoppe, U. and Samaka, M., A Domain-specific Modeling Language Approach to Support
Various Forms of Online PBL, In Proceedings of the 14th IEEE International Conference on Advanced
Learning Technologies - ICALT2014, July 7-9, 2014, Athens, Greece.

Woods, D. R. (1996). Problem-based learning for large classes in engineering education. Bringing problem-based
learning to higher education. L. Wilkerson and H. Gijselaers. San Francisco, CA, Jossey-Bass: 91-99.

275

