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Abstract: This paper introduces an open source library for e-Book (digital textbook) log 

analysis, called OpenLA. An e-Book system is a useful system which records learning logs. 

Various analysis using these logs have been conducted. Although there are many common 

processes in preprocessing logs, the functions have been developed by per researcher. To reduce 

such redundant development, OpenLA provides useful modules to load course information, to 

convert learning logs into a more sophisticated representation, to extract the required 

information, and to visualize the data. OpenLA is written in the Python language and 

compatible with other Python libraries for analysis. This paper provides a brief explanation of 

each module, followed by re-implementation samples of related studies using OpenLA. The 

details about OpenLA is open to public at https://www.leds.ait.kyushu-u.ac.jp/achievements. 
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1. Introduction 

 
Thanks to the widespread of information and communications technology (ICT) and digital learning 

systems, we can collect not only learning results, such as examination results, but also learning and 

studying processes of individuals, such as how much time a learner spends to study. Understanding 

learner behavior is crucial in learning analytics (LA). Learning logs collected via digital systems are 

often utilized for analytics for teaching and learning. A learning management system is a digital system 

that is generally used for collecting learning logs; however in recent years, e-Book (digital textbook) 

systems are increasingly used. An e-Book system records detailed learning processes, such as when a 

learner opens a learning material, turns a page in the material, highlights, notes, and bookmarks.   

The e-Book operation logs are used for research, e.g., to determine the successful features in 

learning activities (Yin, 2019); to understand learner behaviors (Shimada, 2019), to estimate academic 

performance (Okubo, 2018), and to identify at-risk students (Shimada, 2018). The first step of such 

research is to aggregate the learning logs in order to extract learning behaviors, such as calculating the 

reading time of each learner and page-wise summary of operations by learner. So far, each researcher 

has developed his/her study’s preprocessing, even though there are many common processes. 

Individually developing the common processes causes redundancy and decreases efficiency of 

advanced learning analysis.  

One of the solutions is to develop an open source library for the common processes. For example, 

the computer vision field has many common processes such as segmentation, calibration, and optical 

flow. However, redundancy is reduced by an open source library named OpenCV (https://opencv.org/). 

In addition, various open source libraries have been developed such as OpenGL 

(https://www.opengl.org/) for 3D computer graphics and PTAM (Klein, 2007) for augmented reality. 

We developed such an open source library for e-Book log analysis, called “OpenLA.” This 

library reduces redundancy in the development of common processes and accelerates the development 

of core technologies for advanced learning analytics. In Section 2, we explain OpenLA’s application 

programming interfaces (APIs). In Section 3, we show usage examples of OpenLA. In Section 4, we 

describe how to activate OpenLA. Lastly, in Section 5, we conclude our paper and indicate areas for 

improvement. 

 

https://www.leds.ait.kyushu-u.ac.jp/achievements
https://opencv.org/
https://www.opengl.org/


2. API Concept 

 

2.1 Basic Information 

 
The APIs are written in Python language and compatible with other Python libraries for analysis, such 

as Scikit-learn (Pedregosa, 2011) and Tensorflow (Abadi, 2016). The dataset used in this library has the 

same structure with that of the open source ones used to conduct data challenge workshops in LAK19 

and LAK20 (https://sites.google.com/view/lak20datachallenge). Note that the dataset is not a unique 

structure, and other e-Book systems can be used for constructing this dataset. The dataset includes four 

types of CSV files: 

• Course_#_EventStream.csv: Data of the logged activity from learners’ interactions with the 

BookRoll system (Ogata, 2015).  

• Course_#_LectureMaterial.csv: Information about the length of lecture materials used.  

• Course_#_LectureTime.csv: Information about lecture schedules.  

• Course_#_QuizScore.csv: Data on the final score of each student. 

For analyzing this dataset, getting course information, converting the learning logs into a form 

suitable for analysis, extracting the required information, and visualizing the data are essential and 

common preprocessing for e-Book log analysis. To reduce redundant development, OpenLA provides 

four types of modules: Course Information, Data Conversion, Data Extraction, and Data Visualization. 

Figure 1 shows the flow of preprocessing with OpenLA. In the following section, we describe the four 

types of modules and data forms. 
 

 
Figure 1. The flow of preprocessing with OpenLA. 

 

 

2.2 Course Information Module 

 
The Course Information module receives the dataset files and loads basic information about a course. 

This module returns the instance of Python class CourseInformation, and the member function returns 

basic information including registered user id, content id (lecture materials), users’ final score, and 

lecture start and end time. Table 1 shows a part of the member functions for loading basic information.   
 

Table 1. 

Part of Member Functions of the CourseInformation class 

Function Description 

OpenLA.CourseInformation.load_eventstream() Load the event stream data 

OpenLA.CourseInformation.user_ids() Get the user ids in this course 

OpenLA.CourseInformation.lecture_start_time() Get the lecture start time in this course 

… … 

https://sites.google.com/view/lak20datachallenge


The function load_eventstream in this module loads the event stream (learning logs) as a 

Pandas.DataFrame type member variable of the Python class named EventStream. Table 2 shows an 

example of event stream data. The class EventStream has useful member functions to aggregate data in 

an event stream. However, detailed information cannot be aggregated from the original event stream. 

Therefore, an event stream needs to be converted into a more sophisticated representation by the Data 

Conversion module, and the required information must be extracted by the Data Extraction module. 
 

Table 2.  

An Example of an EventStream 

user id contents id operation name page no. event time … 

A X OPEN 1 2020/01/01  12:00  

A X NEXT 1 2020/01/01  12:05  

A X MARKER 2 2020/01/01  12:12  

…      

 

 

2.3 The Data Conversion Module 

 
The Data Conversion module provides four functions; convert_into_operation_count, 

convert_into_page_wise, convert_into_page_transition, and convert_into_time_range. Each function 

receives an instance of EventStream and converts it into more sophisticated Python classes named 

OperationCount, Page-wiseAggregation, PageTransition, and Time-rangeAggregation. As with 

EventStream, each Python class has the converted log data as their member variable, and they also have 

the member functions to aggregate the data. These four classes are used depending on the kind of 

analysis conducted. Each class is described below. 

Firstly, OperationCount provides the total number for each operation in each content. Table 3 

shows an example data of OperationCount. The tendencies in students’ learning activities can be 

understood from this content-level aggregation. 

 

Table 3.  

An Example of OperationCount 

user id contents id NEXT PREV MARKER … 

A X 75 32 19  

A Y 169 106 11  

B X 60 18 2  

 …      

 
Secondly, Page-wiseAggregation provides data on how long each user reads a page and how 

many times each operation is used on the page. Table 4 shows an example data of 

Page-wiseAggregation. This representation is useful to investigate which pages are intensively read by 

high-performance students, on which pages learners take notes and draw highlights, and so on. 

 

Table 4.  

An Example of Page-wiseAggregation 

User id Contents id page no. reading seconds MARKER … 

A X 1 109 0  

A X 2 245 3  

A X 3 195 1  

…      

 



Thirdly, PageTransition also provides data on how long each user reads each page and how many 

times each operation is used. However, it also considers the reading order (going back and jumping 

page), whereas Page-wiseAggregation provides the total value for each page. Table 5 shows an 

example data of PageTransition. This representation accurately tracks learning activity; therefore, it is 

suitable for analyzing reading behavior patterns. 

 

Table 5.  

An Example of PageTransition 

user id contents id page no 
reading 

seconds 
time of entry time of exit … 

A X 1 60 2020/01/01  12:00 2020/01/01  12:01  

A X 2 245 2020/01/01  12:01 2020/01/01  12:05  

A X 1 49 2020/01/01  12:05 2020/01/01  12:06  

…       

 
Finally, Time-rangeAggregation provides the pages read for the longest time and the number of 

operations used in each time range. Table 6 shows an example data of Time-rangeAggregation. The 

period is specified in the converting function (60 seconds is specified in Table 6). This representation is 

useful for comparing user activity within a period, such as whether a student’s reading behavior is 

following the reading behavior of a teacher or other students. 

 

Table 6.  

An Example of Time-range Aggregation 

user id contents id 
elapsed 

seconds 
page no start of range end of range … 

A X 0 1 2020/01/01  12:00 2020/01/01  12:01  

A X 60 4 2020/01/01  12:01 2020/01/01  12:02  

A X 120 5 2020/01/01  12:02 2020/01/01  12:03  

…       

 

 

2.4 The Data Extraction Module 

 
The Data Extraction module receives an instance of EventStream or converted representations and 

extracts the required information on users, specific contents, and so on. For example, to analyze which 

learning behavior affects student performance, one may focus on the logs of high-score students and 

low-score students. To investigate the logs of these two types of students, one needs to extract their logs. 

OpenLA provide two functions for this extraction: users_in_selected_score and select_user. Table 7 

shows the functions of the Data Extraction module. 

 

Table 7. 

Part of the Functions of the Data Extraction Module 

Function Description 

OpenLA.select_user() Extract data about selected user 

OpenLA.select_contents() Extract data about selected content 

OpenLA.select_by_lecture_time() Extract data during/ before/ after the lecture  

… … 

 

 



2.5 The Data Visualization Module 

 
Data Visualization module receives an instance of EventStream or converted representations, and 

renders a visual graph. Data features of the graph can be easily understood, and user data is easy to 

compare. Table 8 shows the functions of the Data Visualization module. For example, the function 

visualize_pages_in_time_range renders a line graph that shows which pages are read by users in a given 

time period. The graph shows which pages a student is interested in, and makes it easy to compare the 

differences among students’ activities.  

 

Table 8. 

Part of the Functions of Data Visualization Module 

Function Description 

OpenLA.visualize_time_series_graph() Visualize learning activity in a time series 

OpenLA.visualize_operation_count_bar() Visualize operation count of a specific user 

OpenLA.visualize_pages_in_time_range() Visualize the page user read in a time range 

… … 

 

 

3. Usage Example 

 
To show how effective OpenLA is in reducing redundant development and writing short code, we adapt 

OpenLA for off-task detection in lecture time (Akçapınar, 2019). This research aims to detect off-task 

behaviors from in-class reading activity. Students took a lecture with an open-book quiz during the last 

15 minutes; therefore, users’ reading patterns during this time varied. The researchers eliminated the 

quiz part, and the remaining learning logs were grouped into one-minute intervals. After the grouping, 

they extracted pages read for each student at each time interval. The page difference between a student 

and teacher at each time interval represents the student’s reading pattern vector. The clustering result of 

the vectors identified on-task or off-task students. 

For preprocessing, we grouped student reading behavior in one-minute intervals and visualized 

the results. Figure 2 shows summary of preprocessing, the number of lines without OpenLA, and the 

corresponding functions of OpenLA. The whole code and the result is shown in documentation website 

(https://www.leds.ait.kyushu-u.ac.jp/achievements). To aggregate learning logs at each interval, we 

utilized the function, convert_into_time_range, which converts EventStream into 

Time-rangeAggregation data. The arguments of convert_into_time_range were specified, considering 

that the in-class activity log is grouped into one-minute intervals and the last 15 minutes is eliminated. 

After the conversion, the function visualize_pages_in_time_range in the Data Visualization module 

visualized students’ reading tracks. The functions can also be applied to preprocessing for other 

time-based analysis. 

As shown in this example, OpenLA reduces the workload of preprocessing. The functions 

contribute not only to reduce the amount of codes, but also to give clear definition, i.e., what is the input 

and output of each function.  Although this example shows the efficient preprocessing with OpenLA, 

making dataset files for this library is additional work; therefore, we will implement the function to 

make dataset files from a database.  

 

 
Figure 2. Summary of preprocessing for off-task detection. 

https://www.leds.ait.kyushu-u.ac.jp/achievements


4. Installation of OpenLA 
 

The supported version is Python 3.7.X, and the required libraries are pandas 0.25.X, numpy 1.16.X, and 

matplotlib 3.1.X. To install OpenLA, one has to type “pip install OpneLA” into the command line in 

your Python environment. The required libraries are installed together if not previously installed. Note 

that PIP must be installed (https://pypi.org/project/pip/). The documentation of OpenLA and a sample 

dataset are open to public (https://www.leds.ait.kyushu-u.ac.jp/achievements). 

 

 

5. Conclusion and Future Works 

 
OpenLA is a Python library and provides four useful modules to preprocess e-Book learning logs. The 

Course Information module loads basic information of a course and loads Event Stream. The Data 

Conversion module converts the event stream into a more sophisticated representation. The Data 

Extraction module extracts the required information. The Data Visualization module visualizes the 

data. These modules help to reduce the redundant development of common preprocessing so that 

researchers can focus on the development of core technologies for advanced learning analytics. 

 In future work, we will receive feedback from end users and improve performance and usability. 

Moreover, we will improve datasets requirement. The current version of OpenLA requires four types of 

CSV files as described in Section 2.1; therefore, end users need to export the CSV files from a database 

on their own. In addition, analyzing online (real time) logs with OpenLA is difficult, because OpenLA 

requires CSV files. To solve these problems, we plan to add modules to connect with databases. 
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