

Code Reading Environment according to

Visualizing both Variable’s Memory Image and

Target World’s Status

Satoru KOGURE a*, Ryota FUJIOKAa, Yasuhiro NOGUCHIb, Koichi YAMASHITAc

Tatsuhiro KONISHIa, & Yukihiro ITOHd
aGraduate School of Informatics, Shizuoka University, Japan

bFaculty of Informatics, Shizuoka University, Japan
cFaculty of Business Design, Hamamatsu University, Japan

dShizuoka University, Japan

*kogure@inf.shizuoka.ac.jp

Abstract: In this paper, we describe the code reading environment according to visualizing

both variable’s memory image and target world’s status. We had constructed those environment

that have two important function. One is the function by which the teacher can reflect his/her

intention for instruction on the view of target world’s status. Another is the function by which

the programming beginner can more deeply understand a program using our proposed

environment.

Keywords: Code reading environment

1. Introduction

We think that it is for novice programmers important to understand the relationship between the

algorithm and the program in code reading phase observing both memory image of variables in program

and status of target worlds. In typically, almost all of novice programmer attend a lecture using

educational materials that is included in target world dependency. The beginner can reproduce the

status of target world (STW) using the materials. In contract, expert programmer also can analyze a

memory image of variables (MIV) in programs step-by-step using typical debugger. In case of simple

calculation’s task, the representation of STW and MIV are almost same. Although, in case of complex

algorithm or data structure, the STW have different representation from MIV. The expert programmer

can estimate the STW by observing the MIV using debugger in a program that includes complex

algorithm or data structures. Although the beginner programmer cannot because he/she cannot

understand the relationship among program, STW and MIV.

Many systems that support to understand the program and algorithm for novice programmer

had constructed by many researcher (Fossati et al. (2008), Gabor (2009), Kogure et al. (2013), Malmi et

al. (2004) and Noguchi et al. (2010)). We think that these systems have two issues. First issue is that the

teacher cannot freely decide the format visualizing the STW. Some systems can reproduce the STW in

any step in programs. In those system, although, the teacher cannot reflect his/her intent for instruction

to the view of STW. Second issue is that the learner cannot show the STW and MIV synchronously.

Almost all system can show the STW for particular algorithm. In the other hand, typical debugger can

show the MIV for almost all program that is written for a variety of algorithm. Although, some systems

and debugger cannot display the relationship among program, STW and MIV.

The aim of this study is to solve the issues. We had constructed new code reading environment

according to visualizing the relationship among a statement of program, STW and MIV for novice

learner. This environment has two important function and three basis function. One important function

is the function that gives the teacher an environment by which he/she can define the view of STW

according to his/her intent. Another is the function that gives the learners an environment by which they

can understand the relationship among program, STW and MIV.

343

2. Fundamental Consideration

2.1 Definition of the State of Target World and the Memory Image of Variables

We think that there are two views for visualizing a behavior of program. One is a state of target world

(STW) and another is a memory image of variables (MIV). Figure 1 shows an example of STW and

MIV for task of sorting values in array list. As mention in Figure 1, it is easy for novice programming

learners to understand a behavior of algorithm using a view of STW instead of a view of MIV. In fact,

many systems that support to understand the program and algorithm for novice programmer support a

view of STW (Fossati et al. (2008), Gabor (2009), Kogure et al. (2013), Malmi et al. (2004) and

Noguchi et al. (2010)). In contrast, programming learners must observe a view of MIV to deeply

understand a behavior of program or to fix a program that includes a bug.

Figure 1. An example of a state of target world and a memory image of variables.

2.2 The Issue that the Teacher cannot Freely Decide the Format Visualizing the STW

Almost all of studies for viewing a STW was for particular algorithm. Some studies’ STW don’t depend

on a particular algorithm but also teacher cannot define a view form of STW. In a case of displaying

array list for sorting task, teacher maybe display the array list on horizontal layout (in Figure 1). In

contrast, he/she maybe display the array list on vertical layout for stack. Furthermore, the teacher want

to change a view of each variable to emphasize the particular variable or to hide some variables. For

example, the teacher maybe think that he/she want to hide a view of the variable “tmp” (in Figure 1) for

swapping the values of two variable from programming learners. Therefore, we gives the teacher an

environment by which he/she can define the view of STW according to his/her intent.

2.3 The Issue that the Learner cannot Show the STW and MIV Synchronously

Almost all of exist studies can show a statement of program and STW synchronously. Typical debugger

can show a statement of program and MIV synchronously. Although almost all of exist systems cannot

display a statement of program, STW and MIV synchronously. Novice programming learners can

easily understand a behavior of program using exist systems that can display a view of STW. Although

he/she maybe not understand a behavior of program using debugger that can display a view of MIV. In

contrast, an expert programmer maybe understand a behavior of program using debugger. The

difference of novice and expert is whether to be able to understand the relationship among a statement

of program, STW and MIV or not. Therefore, we gives the learners an environment by which they can

understand the relationship among program, STW and MIV.

10 30 25 75 5 35

[1][0] [2] [3] [4] [5]

a

6num Address Type Name Value

2000 int tmp ----

2004 int Num 6

2008 int a[0] 10

2012 int a[1] 30

2016 int a[2] 25

2020 int a[3] 75

2024 int a[4] 5

2028 int a[5] 35

tmp

A state of target world A memory image of variables

344

3. Required Functions for Our Proposed Environment

In order to solve two issues, we define the following five functions for code reading environment:

Func.1. A function that extracts execution history (EH) from a program and generates a program

embedded HTML tags for each statement

Func.2. A function that reproduce MIV by using extracted EH

Func.3. A function that give the teacher the environment by which he/she can set the form for the view

of the STW for solving first issue.

Func.4. A function that reproduce STW by using MIV and the rule for the view of the STW

Func.5. A function that displays the statement in program, MIV and STW synchronously for solving

second issue

There are two types of functions; basis function and important function. Func.1, 2 and 4 are

basis functions that we implement using exist methods. Func.3 and 5 are important functions for solving

two issues.

3.1 Func.1: A Function that Extracts EH from a Program and Generates a Program

embedded HTML Tags for Each Statement

This function is the function that translates a program into two different programs shown in Figure 2.

First program includes the code for generation execution history including statement ID and dynamic

history ID. The module for this function gives the fragment of statements the unique statement ID when

parsing original program. In contrast, the module generates the statement for observing execution state

and insert observation statement in original programs. The observation statement dynamically

generates history ID when revised program executes. Second program includes the HTML tags for each

fragment of statements. The proposed system can display the fragment in program embedded HTML

tags and memory image of variable referring execution history synchronously because the statement ID

in program embedded HTML tags correspond to the statement ID in execution history.

Figure 2. Overview of extracting execution history from a program and generating a program embedded

HTML tags.

3.2 Func.2: A function that Reproduce a MIV by Using Extracted EH

This function reproduces the state of executing program by referring execution history (Func.2.1) and

displays the memory image of variables (Func.2.2). Func.2.1 generates a set of memory image of

variables MIV by referring EH (EH={eh1, eh2, …, ehn}) shown in Figure 3.

The certain memory image of variables mivi includes a set of the four variable information;

defined variables’ name, types of variables, addresses of variables and values of variables when the

system executes from eh1 to ehi. EH includes five fundamental operation as follows:

 An operation that allocate memory region for new variable

 An operation that assign new value

Program

Program that
include HTML

tags (that
have

statement
ID)

Execution
history

that have
statement ID
and history

ID

Program that
includes the

code for
generating
execution

history

parsing
program and

generating
two program

Typical
Compiler

345

Figure 3. Overview of reproduce MIV by using extracted EH.

 An operation that allocate memory region for new instance of certain structure (e.g. “struct” in C

language, “class” in Java language, etc.)

 An operation that clear memory region for exist variable

 An operation that clear memory region for exist instance

This function is generate the MIV set using the Algorithm 1.

Algorithm 1: generating the MIV

1: },,,{ 21 nehehehEH  : execution history

2: {}MIV : set of memory image of variables

3: {}cmiv : a memory image of variables after executing from eh1 to ehi

4: for i=1 to n do

5: Emulate ehi on memory image cmiv.

6: Push emulate result to cmiv.

7:)(cmivclonemivi 

8: push mivi to MIV

9: end for

3.3 Func.3: A Function that Give the Teacher the Environment by which he/she can Set the

Form for the View of the STW

First, we define the two types of object that the teacher use for composing a view of STW. First type is

a main object that directly correspond to a variable in program. Second type is a sub object for

explaining a role of a main object, explaining a relationship between a main object and other main

object, or setting an array/table layout of each object. The teacher can specify each attribute value (e.g.

object’s position, size, color, and so on) of each object. Therefore, the teacher can set a timing in which

an object creates, deletes, shows and hides by using statement ID or history ID.

The teacher prepares the configuration file for a view of STW described above paragraph.

Table 1 shows the content of configuration that teacher describes for main/sub objects and timing of

creating/deleting/displaying/hiding each object.

Table 1: Types of object and Attributes for Configuration of STW.

 Operations Types Common Attributes

Main Object
Create, Delete

Update

Circle, Square

Rectangle

Corresponded variable,

Position, Width, Height,

Color, Line weight

Line style

Sub Object
Create, Delete

Update

Connecter, Table

Label, Line, Balloon

Target main object ID,

Position, Width, Height,

Color, Line weight

Line style

Execution
history

that have
statement ID
and history

ID

Generating
MIV

Displaying
each

that
corresponds

to each
statement

Program that
includes the

code for
generating
execution

history

Browser
(HTML +

JavaScript)

346

The teacher can use three types of actions described in Table 1. “Create” action of main object

is an action when observing an execution history in which a new variable is created. “Delete” action of

main object is an action when observing an execution history in which an existed variable is cleared.

“Update” action is an action for changing any attribute (e.g. color for emphasizing) at any timing that

the teacher decides using statement ID or history ID).

The teacher can also use sub object in Table 1 for explaining a role of a main object or a

relationship between a main object and other main object. For example, “Connecter” type is a connecter

that connect a main object to other main object. The teacher can present the reference relation using

attribute “Line style” (e.g. arrow). “Balloon” type is a balloon help for a main object.

The a rule description of rule set for a view of STW includes five items; “condition”,

“operation”, “object name”, and “set of attribute-value”. “Condition” item is for specifying a timing of

adapting the rule. The teacher can use six comparison operation; “==”, “!=”, “>=”, “<=”, “>” and “<”

and three types of operands; “immediate number”, “variable in program” and “statement or history ID”.

3.4 Func.4: A Function that Reproduce STW by using MIV and the Configuration for the View

of the STW Created by the Teacher

The system reproduce certain stwi according to mivi and configuration rule set for the view of the STW

created by the teacher. The system find rules in which a comparison operation is satisfied. If the system

find match rule, the system executes this rule. If this rule is “create” operation’s rule for main object, the

system retrieve a value of variable corresponding the rule from mivi and display a main object according

to object name, variable value and a set of attribute-value.

3.5 Func.5: A Function that Displays the Statement in Program, MIV and STW synchronously

Learners can show a reproduced execution process of program code using our proposed environment.

Our proposed system have execution history, EH, as common knowledge that each function use for

executing own affair. Learners can use “next” or “prev” command for moving focused execution

history ehi to next execution history ehi+1 or previous execution history ehi-1. Therefore, the system

reproduces mivi+1 or mivi-1 for memory image of variables and also reproduces stwi+1 or stwi-1 for a state

of target world.

4. Implementation

Figure 4 shows an overview of our proposed environment. First, the left side area is for displaying

program. Second, the right/top side area is for displaying a memory image of variables. Last, the

right/bottom side area is for displaying a state of target worlds. In this study, target programming

language is C language. We implement the parser of C language using Parse::RecDescent (Perl module

for generate recursive-descent parser, referring http://search.cpan.org/~jtbraun/) and we implement the

other module using HTML and JavaScript. We use JSON format as the representation of execution

history.

For primary evaluation, we monitored what minutes the one of author spends creating the rule

set for a view of STW. We select three situation; binary search task, linked list task, and other linked list

task. As a result of evaluation, we obtained 36, 48 and 37 minutes, respectively. Therefore, we suggest

that the teacher and learners maybe can use our environment in real classroom lecture.

5. Conclusion

We had constructed new code reading environment according to visualizing the relationship among a

statement of program, STW and MIV for novice learner. This environment has two important function.

One important function is the function that gives the teacher an environment by which he/she can define

the view of STW according to his/her intent. Another is the function that gives the learners an

347

environment by which they can understand the relationship among program, STW and MIV. We easily

evaluate first important function. As a result, we suggest that the teacher and learners maybe can use our

environment in real classroom lecture.

In the future, we will refine the second important functions. Therefore, we will evaluate the

advantage of our proposed two function on real classroom lectures.

Figure 4. Overview of our proposed environment.

Acknowledgements

This study was supported by Japanese Grant-in-Aid for Scientific Research (B) 24300282.

References

Fossati, D., Eugenio, B. D., Brown, C., & Ohlsson, S. (2008). Learning linked lists: experiments with the iList

system, Proceedings of the 9th International Conference on Intelligent Tutoring Systems, 80-89.

Gabor, T., (2009). Algorithm visualization in programming education,. Journal of Applied Multimedia. 4(3),

68-80.

Kogure, S., Okamoto, M., Yamashita. K., Noguchi. Y., Konishi, T., & Itoh, Y. (2013). Adapting guidance and

externalization support features to program and algorithm learning support environment. Proc. of the 21st

International Conference of Computers in Education, 418-424.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppala, O. & Silvasti, P. (2004). Visual algorithm

simulation exercise system with automatic assessment: TRAKLA2, Informatics in Education, 3(2), 267-288.

Noguchi, Y., Nakahara, T., Kogure, S., Konishi, T., & Itoh, Y. (2010). Construction of a learning environment for

algorithm and programming where learners operate objects in a domain world’, International Journal of

Knowledge and Web Intelligence, 1(3), 273-288.

a memory image of

variables

a state of target world

first previous next last

348

