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Abstract: Deep learning has become a competitive method to build knowledge tracing (KT) 

models. Deep learning based knowledge tracing (DLKT) models adopt deep neural network but 

lack interpretability. The researchers have started working on interpreting the DLKT models by 

leveraging on methods in explainable artificial intelligence (xAI). However, the previous study 

was conducted on a relatively small dataset without comprehensive analysis. In this work, we 

perform the similar interpreting method on the largest public dataset and conduct the 

comprehensive experiments to fully evaluate its feasibility and effectiveness. The experiment 

results reveal that the interpreting method is feasible on the large-scale dataset, but its 

effectiveness declines with the larger size of learners and longer sequences of learner exercise. 
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1. Introduction 

 
Knowledge tracing (KT) attempts to model learners’ dynamic knowledge states on the skill level and 

predict their performance on the following exercises. With strong capacity to learn the inherent 

relationships from exercise data, deep learning has been adopted to build KT models. However, deep 

learning based knowledge tracing (DLKT) models have an untransparent decision process impeding 

their deployment. By leveraging on a technique called layer-wise relevance propagation (LRP) (Bach 

et al., 2015), we explored interpreting the DLKT model on a small dataset (Lu et al., 2020). It is still an 

open question whether the post-hoc interpreting method is feasible on large datasets.  

In this work, we adopt the LRP method on one of the largest datasets, called EdNet (Choi et al., 

2020). Specially, we clarify the technique of the LRP method in section 3, and perform the experiments 

to evaluate the feasibility and effectiveness of the method in section 4. The results reveal the LRP 

method is feasible on the large dataset, but its effectiveness declines with the larger size of learners and 

longer exercise sequence. By demonstrating the effectiveness issues of the current interpreting method, 

this work would be a solid step to build a fully transparent DLKT models.  

 

 

2. Related Work 

 

2.1 Knowledge Tracing 

 
Bayesian knowledge tracing (BKT) (Corbett & Anderson, 1995) can be regarded as the most prominent 

KT model, adopting the hidden Markov model (HMM) to estimate learner’s mastery state on individual 

skill. Subsequent studies consider more factors to improve BKT, e.g., knowledge prior (Chen et al., 

2017). Besides, logistic regression models have been deployed to build KT models. Recently, deep 

learning was introduced into KT domain. Deep knowledge tracing (DKT) (Piech et al., 2015) was the 

pioneer work. Then, the dynamic key-value memory network (DKVMN) (Zhang et al., 2017) and its 

variants (Chaudhry et al., 2018) were adopted to improve model performance. The attention network 

(Su et al., 2018) had been adopted to better represent question semantics. Besides, other information, 

e.g., prerequisite information (Chen et al., 2018), was utilized to design new DLKT models.  
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2.2 Explainable AI 

 
The intransparent decision process of deep learning models is often hard to understand for human. To 

tackle this issue, researchers have proposed many explainable AI methods to interpret models’ outputs 

and their inner working mechanism. The interpretability can be classified as ante-hoc and post-hoc: the 

ante-hoc interpretability focuses on training simple-structured machine learning models (Melis & 

Jaakkola, 2018), e.g., linear regression. The post-hoc interpretability focuses on interpreting the trained 

models. Among the post-hoc interpretability, the local methods such as backward propagation (Zeiler 

& Fergus, 2014) mainly aim to clarify the importance of the input features to model’s predictions. In 

this work, we adopt a backpropagation method, namely LRP method, to interpret the DLKT models. 

 

 

3. Building and Interpreting DLKT Models 

 

3.1 DLKT Models on EdNet and ASSISTments 

 
We adopt the long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) to build the DLKT 

models in this work. Figure 1 illustrates the basic architecture of the DLKT model on EdNet. The 

interaction between learner and question can be denoted as the question-answer pair 𝑥𝑡 = {(𝑞𝑡 , 𝑎𝑡)|t =
1, … , N}, where 𝑞𝑡 is the representation of question information, 𝑎𝑡 ∈ {0,1} is the binary representation 

of correct or false answer, and N > 0 is the sequence length. The LSTM accordingly maps the input 

sequence vectors {… 𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1 … } to the output vector {… 𝑦𝑡−1, 𝑦𝑡 , 𝑦𝑡+1 … }. Given most of the 

individual questions in EdNet covering multiple skills, an additional layer is adopted, which simply sets 

the average probabilities of all the skills covered by the next question as the final prediction 𝑧𝑡 as below: 

𝑧𝑡 =
𝑦𝑡  .  𝑞𝑡+1

m
 ,      (1) 

where the dot product operation is performed between 𝑦𝑡  and 𝑞𝑡+1, and m is the number of skills in 

next question. For ASSISTments dataset (Feng et al., 2009), this additional layer is not necessary. 

 

 
Figure 1. The Architecture of a RNN-based DLKT Model. 

 

3.2 Interpreting Method 

 
The LRP method interprets the DLKT models by analyzing the contribution of the individual input to 

the model's final prediction. Given a prediction made by the DLKT model, the LRP method would first 

sets the model's prediction value as the output layer neuron's relevance, and then backpropagate the 

relevance from the output layer to the input layer. During the backpropagating process, it needs to 

handle two different connections in the intermediate layers, namely weighted linear connection and 

multiplicative connection. The weighted linear connection can be written in a general form: 

𝑎𝑗
(𝑙+1)

= ∑ 𝑤𝑖𝑗𝑖  𝑎𝑖
(𝑙)

+ 𝑏𝑗     (2) 

where 𝑎𝑗
(𝑙+1)

 is the information the neuron j in layer l+1 receives from the forward direction, 𝑤𝑖𝑗 and 

𝑏𝑗 are the weight and bias term. Given the relevance the neuron i in layer l receives from the neuron j 

in the layer l+1 is 𝑅𝑖←𝑗
(𝑙)

, we have 
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𝑅𝑖←𝑗
(𝑙)

=
𝑤𝑖𝑗𝑎𝑖

(𝑙)
+

𝑠𝑖𝑔𝑛(𝑎
𝑗
(𝑙+1)

)𝜀+𝑏𝑗

𝑁
𝛿

𝑎
𝑗
(𝑙+1)

 +  𝑠𝑖𝑔𝑛(𝑎𝑗
(𝑙+1)

)𝜀
∗ 𝑅𝑗

(𝑙+1)
    (3) 

where N is the number of neurons in layer l, and the item 𝑠𝑖𝑔𝑛 (𝑎𝑗
(𝑙+1)

) ∗ 𝜀 prevents 𝑅𝑖←𝑗
(𝑙)

 becoming 

unbounded with 𝑠𝑖𝑔𝑛 (𝑎𝑗
(𝑙+1)

)  as 1 or -1 and 𝜀 as a small positive value. We set 𝛿 as 0 to conserve 

relevance for the lower-level neurons. 𝑅𝑗
(𝑙+1)

 is the total relevance of neuron j in the layer l+1. For 

multiplicative connections, we define the neuron whose output ranging between 0 to 1 as “gate” neuron, 

and the remaining one as the “source” neuron. The multiplicative connection can be written as: 

𝑎𝑗
(𝑙+1)

= 𝑎𝑔
(𝑙)

⊙ 𝑎𝑐
(𝑙)

      (4) 

where 𝑎𝑔
(𝑙)

 and 𝑎𝑐
(𝑙)

 respectively are the message the “gate” neuron g and the “source” neuron s receive 

from layer l. During the forward propagating process, the “gate” neuron decides how much of the 

information should be retained in the upper-layer neurons and contributed to the model's decision (Arras 

et al., 2017). We set its relevance 𝑅𝑔←𝑗
(𝑙)

 as zero and give the full credit 𝑅𝑗
(𝑙+1)

 to the “source” gate.  

 

 

4. Evaluation 

 

4.1 Datasets and DLKT Models 

 
We choose ASSISTment2009 and EdNet as the two datasets for the experiments. Table 1 summarizes 

the statistics of the preprocessed datasets. The built DLKT models adopt the LSTM network and 

RMSprop optimization for model training, with the iteration number and learning rate as 500 and 0.01. 

We set the hidden dimensionality, mini-batch size and the dropout rate to 200, 100 and 0.5 respectively. 

For both datasets, we utilize 64% data for training, 16% data for validating and the remaining ones for 

testing. After five-fold cross-validation, overall prediction accuracy (ACC) and AUC achieve 0.70 and 

0.73 for the DLKT model on ASSISTment2009, and achieve 0.68 and 0.66 on EdNet. 

 

Table 1. Statistics of the Preprocessed Two Datasets ASSISTment2009 and EdNet 

Dataset Learners Skills Questions Interactions 

ASSISTment 2009 3,091 110 16,850 320,582 

EdNet 442,030 188 12,372 93,359,825 

 

4.2 Feasibility Evaluation 

 

4.2.1 Consistency Experiment 

 
Given the calculated relevance for each question-answer pair, we investigate whether the sign of the 

relevance is consistent with the correctness of the answer. We define correctly-answered questions with 

positive relevance or falsely-answered questions with negative relevance as consistent questions and 

define the percentage of the consistent question in each sequence as consistent rate. A high consistent 

rate reflects that the LRP method could properly differentiate the correctly-answered and falsely-

answered questions. Specifically, we utilize 7,143 and 1,187,377 sequences with a length of 15 in the 

two datasets as the test data. For each sequence, the first 14 question-answer pairs are the input, and the 

last pair is to validate the model's prediction. We obtain 4,972 correctly-predicted sequences in 

ASSISTment2009 and 799,857 correctly-predicted sequences in EdNet.  

Figure 2 gives the histogram of the consistent rate on the two datasets. Nearly 80% sequences 

achieve a high consistent rate (i.e., 90% or above) in ASSISTment2009, while only around 50% 

sequences achieve a high consistent rate (i.e., 90% or above) in EdNet. Both distributions clearly show 

that the majority of sequences in both datasets receive 70% consistent rate or above, which demonstrate 

the sign of the calculated relevance values on both the small and large datasets. 
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4.2.2 Deletion Experiment 

 

We further quantitatively investigate the relevance for both datasets by performing the deletion 

experiment. Specifically, for each correctly-predicted sequence, we delete the question-answer pair 

in a decreasing order of their relevance values for positive predictions or in an increasing order for 

negative predictions, and then record the predictions accuracy after each deletion. We also delete the 

question-answer pairs at random for comparison. Figure 3 illustrates the results on ASSISTment2009 

and EdNet. For both datasets, all the accuracy lines drop down from 1.0 with an increasing number 

of the question-answer pair deletions, but the LRP lines drop much faster than the random lines. 

 

 
Figure 2. Histogram of the Consistent Rate on ASSISTment2009 and EdNet. 

 

 
(a) ASSISTment2009                     (b) Ednet 

Figure 3. Accuracy Changes of Correctly-Predicted Sequences on the Two Datasets. 

 

 
(a) ASSISTment2009         (b) Ednet 

Figure 4. Accuracy Changes of Falsely-Predicted Sequences on the Two Datasets. 

 

For each falsely-predicted sequence, we conduct similar experiments. Figure 4 shows that the 

accuracy lines rise from 0.0 with an increasing number of deletions for both datasets, but the LRP lines 

rise much faster than the random lines. All the deletion experiment results illustrate that the quantity of 

the relevance computed by the LRP method is possible to infer the question-level contribution to the 

final prediction result, and the LRP method is feasible on the large dataset EdNet. 

 

4.3 Effectiveness Evaluation 

 
To evaluate the effectiveness of the LRP method, we compare the accuracy changes between 

ASSISTment2009 and EdNet directly, deducting the random deletion effect. Figure 5 shows that the 

accuracy changes on ASSISTment2009 are much larger than on EdNet, which indicates the LRP 

method is less effective on the large dataset. This might be due to the larger number of learners. Another 

feature of the EdNet is the length of its sequences, which are larger than the ones in ASSISTment2009. 

We design the experiments on EdNet to evaluate whether the length of sequences (i.e., the number of 

question-answer pairs in one sequence) affect the effectiveness of the LRP method. Specifically, we 
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divide the test data in EdNet into the sequences at a length of 15, 50, 100 and 200, and conduct the 

consistency and deletion experiments Table 2 summarizes sequence number at different lengths.  

 

 
(a) Correctly-Predicted Sequences       (b) Falsely-Predicted Sequences 

Figure 5. Comparison of the Accuracy Changes between ASSISTment2009 and EdNet. 

 
Table 2. Number of Sequences at a Length of 15, 50, 100 and 200 in EdNet 

 Len15 Len50 Len100 Len200 

Correctly 

Predicted 

Positive Prediction 751,737 218,173 102,603 47,110 

Negative Prediction 48,120 11,698 5,384 2,467 

Falsely 

Predicted 

Positive Prediction 354,901 96,491 45,097 20,289 

Negative Prediction 32,619 8,540 3,908 1,745 

Total  1,187,377 334,902 156,992 71,611 

 

 
Figure 6. Histogram of the Consistent Rate at Different Lengths of the Sequences. 

 

 
(a) Correctly-Predicted Sequences    (b) Falsely-Predicted Sequences 

Figure 7. Comparison of the Accuracy Changes at Different Lengths of the Sequences. 
 

Figure 6 gives the histogram of the consistent rate at different lengths. Less than 5% sequences 

at different lengths have a consistent rate below 0.6, showing the feasibility of the LRP method. 

Different lengths exhibit distinct distributions: for the shorter ones, e.g., length of 15 and 50, the highest 

sequence percentage bars appear in the consistent rate range 1-0.9, and then they sharply drop down 

with the decreasing consistent rate. For the longer sequences, e.g., length of 100 and 200, the highest 

sequence percentage bars appear in the consistent rate range 0.9-0.8, and then drop down smoothly. In 

other words, the distributions tend to display their non-monotonic and long-tail patterns, which indicates 

that the long sequences might affect the sign of the relevance calculated by the interpreting method.    

Figure 7 presents the deletion experiment results at different lengths. For the correctly-predicted 

sequences, Figure 7(a) shows all the accuracy lines drop down with an increasing number of deletions. 

However, the lines of shorter sequences (e.g., length of 15) drop much faster than the longer ones (e.g., 

length of 200). For the falsely-predicted sequences, in Figure 7(b) all the accuracy lines rise up with an 

increasing number of deletions. However, the lines of shorter sequences (e.g., length of 15) rise much 
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faster than the longer ones (e.g., length of 200). Both experiment results indicate that the relevance for 

longer sequences are more difficult to reflect the question-level contributions to the prediction. It is 

more difficult for the LRP method to capture important question-answer pairs from longer sequences.  

 

 

5. Conclusion 

 
In this work, we first build the RNN-based DLKT models on both ASSISTment2009 and EdNet, and 

then perform the LRP methods on both the small-scale and large-scale models. Both the consistency 

and deletion experiments validate the feasibility of the interpreting method on the large dataset EdNet. 

However, the current interpreting method performs less effective on EdNet, which might be mainly due 

to its bigger size of learners and longer sequence of learner exercise. On a broader canvas, this work 

validates the basic interpreting method for explaining the DLKT model's predictions, but suggests the 

new studies to improve the current interpreting methods due to the large-scale educational datasets. 
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