
Liu, C.-C. et al. (Eds.) (2014). Proceedings of the 22nd International Conference on Computers in
Education. Japan: Asia-Pacific Society for Computers in Education

On Using Mutation Testing for Teaching
Programming to Novice Programmers

Rafael A. P. OLIVEIRAa*, Lucas B. R. OLIVEIRAab,
Bruno B. P. CAFEOc & Vinicius H. S. DURELLIa

aDepartment of Computer Systems ICMC, University of Sao Paulo, Brasil
bIRISA Research Institute, University of South Brittany, France

cOpus Research Group, Informatics Department, PUC-Rio, Brasil
*rpaes@icmc.usp.br

Abstract: In this paper we argue that the incorporation of experiences on testing activities, in
particular mutation testing, in programming courses adds valuable knowledge to the learning
process. Mutation testing is centered on the idea of creating test data for uncovering seeded
faults in programs that slightly differ from the original program. These faulty programs are
called mutants. Through source code analysis and test case execution, testers have to identify
the differences between the original program and the mutants. To do so, testers must have a
sound understanding of the program's control flow and instructions. This broad understanding
of programming represents a key skill for novice students in programming courses. We
evaluate the effects of using mutation testing to improve the learning process of novice
students in programming courses. We conclude that the introduction of mutation testing in the
learning process provides students with learning experiences that go beyond traditional
lectures and hands-on programming courses.

Keywords: Programming, mutation testing, experimental study, computer-aided instruction

1. Introduction

This paper reports on an experience of using Mutation testing to support the learning process
of novice students in an undergraduate programming course. Mutation testing (DeMillo, 1979) is a
fault-based testing criterion which relies on typical mistakes programmers make during software
development. Further, our research aims to use a software testing criterion to improve the learning
experience of novice programmers. Hence, we present Pascal Mutants, a tool able to support mutation
testing for Pascal programs. We have developed this tool specifically to support the learning processes
in programming classes for undergraduate courses. We have chosen Pascal due to its block structures,
statements and explicit variables declarations that make it a well-organized language for beginners. In
addition, Pascal is a procedural language that has commands in a natural language from which
developers can implement reliable and effective programs. Finally, we evaluate the effects of using
mutation testing to improve the learning process of novice students in programming courses.

2. Pascal Mutants

The Pascal Mutants tool was designed to perform mutation at the unit level in Pascal programs.
Through seven mutation operators, the tool injects artificial faults in a given original program,
generating different faulty versions of the original program. Users can select specific mutant
operators, create testing projects, manage and execute testing data, check the mutation score and
compare original and mutant codes. Technically, Pascal Mutants integrates six main modules: (1) a
Pascal syntax analyzer and syntax tree generator, (2) a compiler and loader of mutants, (3) a test case
manager, (4) a results evaluator (test oracle), (5) a mutant manager, and (6) a test reporter.

Pascal Mutants has a syntax analyzer that groups tokens of a source program into grammatical
production, generating a syntax tree that includes a tree-type representation of a source code written in

394

Pascal. To implement these elements we have followed the grammar specification suggested by Setzer
and Melo (1981). Then, using the tool JavaCC (Java Compiler Compiler) and its pre-processor named
JJTree, we have set an effective form to support the mutant creation through parsing of a Pascal code.
After generating mutants, Pascal Mutants uses the resources of GNU Pascal to compile mutants and
to create their associated binary files. During this process, depending on the mutation operator
applied, some mutants may be automatically killed due to compilation errors, for instance. Pascal
Mutants offers functionalities to receive and load test inputs, mark an equivalent mutant, and present
test coverage and statistics

3. An Experimental Study

To conduct a preliminary assessment of the impacts of using mutation testing and the Pascal Mutants
in programming courses, we have applied the concepts presented here in a framework of a four-hour
course for a group of undergraduate students. We divided this experiment in two parts: (Part I) an
experimental setup where we explained theoretical concepts of software testing (Experimental Setup);
and (Part II) a Controlled experiment involving Pascal Mutants. Controlled experiments provide
resources to compare more than one treatment to analyze outcomes (Wohlin et. al 2001).

3.1 Students

The group of subject students was composed of 20 undergraduate students. These students were
enrolled in the second semester of the Bachelor of Computer Science course at UNESP (Universidade
Estadual Paulista) campus Rio Claro, Sao Paulo, Brazil. All students had prior knowledge of about
two-month of a course of algorithms and Pascal language, after which they were considered to be
novice programmers. This activity was conducted during one of their first experiences on practicing
theoretical concepts in a laboratory. They had no prior knowledge of either software engineering or
testing concepts.

3.2 Experimental Setup (Part I)

In the first part of the course we asked the students to turn off their computers. Then, we presented
general concepts of software testing, including theoretical concepts and examples. After that, we
focused on the mutation testing criterion with examples and concepts. Next, we introduced the
students to Pascal Mutants, presenting several examples of basic operations and how to explore all of
the tool's functionalities. During this part of the experiment, the participants had no contact with the
tool.

3.3 Conduction of the Controlled Experiment (Part II)

In the second part of the experience, we conducted a controlled experiment in the laboratory. This
experiment has allowed us to systematically observe the attitudes of all participants. Aiming to solve
the practical activities detailed in Section 4.6, we divided our subjects randomly in two groups of ten
students each. Students in the first group (Group 1 – G1) were asked to conduct their activities using
their preferred Pascal compiler. Then, G1, which was considered the control group of this experiment,
was assigned to only use ad-hoc techniques and their own understanding throughout the experiment.
After that, we designated the students allocated to the second group (Group 2 – G2) to use the Pascal
Mutants tool to perform the same activity. Regarding G2, which is considered the treatment group, we
helped the students to download and set Pascal Mutants on their computers. Besides that, we avoided
giving different attentions for the groups to prevent possible biases.

3.4 Subject Program and Survey

After the setup, we provided a Pascal source code of a program that produces a sequence of numbers
named the Fibonacci series. We have set a Pascal program to receive three parameters by command

395

line: (1) the first element of a Fibonacci series (starting point), (2) the second element of a Fibonacci
series, and (3) the limit of the series (ending point). Then, we have implemented a Fibonacci
algorithm using these parameters that were supposed to be informed by the user.

We have measured the effects of our approach using a survey. In this survey, we did not
provide any specifications about the program. Besides, the variable names offered no clues of their
functionality. In this way, we intentionally avoided any understanding of what the program is intended
to do. Since the students had no previous knowledge about the Fibonacci algorithm, it was expected
that there would be different descriptions of the Fibonacci sequence. Besides the amount of time spent
by the students, the survey was composed of five essay questions about the generic operation and
functionalities of the subject program.

4. Results and Discussion

Results pointed out that Pascal mutant positively affects the understanding about the source code. The
students included in G2 (using Pascal Mutants) had better scores than the students in G1 (using
compilers). With the exception of the fourth question, students in G2 obtained a better mean score in
all of the questions. Analyzing the responses, we noticed that in general, the students in G1 tried to
solve the survey's questions through trial and errors approaches exploring the compiler with different
inputs and observing the program behavior. On the contrary, students in G2 had to think more
carefully about the algorithm to ‘kill’ mutants, consequently they were able to formulate more
accurate answers about the program. Using the mutation analysis was a valuable experience for
novice programmers.

Regarding the time analysis, we observed that students in G2 took a long time to finish their
experiments. This reveals that the practical usage of a mutation testing tool instead of regular
compilers may be considered a disadvantage. This is due to the fact that students in G1 had previously
obtained skills to conduct the experiment using their preferred Pascal compiler. On the other hand,
students in G2 had to dedicate more effort to understand all of the resources and functionalities
provided by Pascal Mutants tool.

5. Conclusions

Traditional methods for teaching programming may not provide enough experiences to reach all
students’ expectations. This paper proposes and evaluates the usage of mutation testing criterion as a
resource to improve the learning processes of novice students in programming courses. Pascal
Mutants, an open source and intuitive testing tool for applying mutation testing in Pascal programs, is
presented. We conducted an empirical analysis on a group of novice programmers represented by
undergraduate students. Our findings show the feasibility of our approach and its benefits. The use of
mutation testing concepts may provide a more complete and accurate understanding of the whole
functioning of a program for novice programmers. Through a trade-off analysis of this approach, we
highlighted the dependence of specific testing tools. We conclude that the incorporation of testing
activities into programming courses generates resources that go beyond lectures and plain hands-on
experience, contributing to the learning of novice programmers. In view of this, the present paper
explores the idea of using artificial defects as a means of diagnosing real defects.

References

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1979) Program mutation: A new approach to program testing,
in Infotech State of the Art Report, Software Testing, pp. 107–126.

Setzer, V. W. and Melo, I. S. H. (1981). A Construção de um Compilador. (in portuguese) Instituto de
Matemática, Estatística e Ciência da Computação da UNICAMP, Rio de Janeiro, Brazil: ed. Campus.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A. (2001). Experimentation in
software engineering: An introduction. Kluwer: Academic Publishers, Norwell, MA, USA.

396

