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Abstract: Knowledge tracing (KT) is the task of modeling how students' academic skills change 

over time. Given a sequence of a student's learning history, one goal of KT is to predict how 

well he/she will perform in the next interaction. Unlike in BKT (Bayesian knowledge tracing), 

the models in DKT (Deep knowledge tracing) cannot be improved simply by introducing 

elaborate prior knowledge about the task domain. Instead, we need to observe how trained 

models behave and identify their shortcomings. In this paper, we examine a problem in existing 

models that have not been discussed previously: the inverted prediction problem, in which the 

model occasionally gives predictions that are opposite to a student's actual performance 

development. Specifically, given an input sequence where a student has solved several problems 

correctly in a row, the model will occasionally estimate his/her skills to be lower than when 

he/she could not solve them. To tackle this problem, we propose pre-training regularization, 

which incorporates prior knowledge by supplying synthetic sequences to the neural network 

before training it with real data. We provide regular, simplistic synthetic data to a sequence-

processing neural network as a specific implementation of pre-training regularization. This 

method solves the inverted prediction problem and improves the performance of the model in 

terms of AUC. We observed its effect qualitatively and introduced a quantitative measure to 

assess the improvement also. For ASSISTments 2009, ASSISTments 2015, and Statics 2011, 

improvements in AUC scores were 0.2 ~ 0.7 %, which are significant considering the scores are 

already high (around 70~80%). We developed an open-source framework for DKT with pre-

training regularization. It also contains user-friendly hyperparameter optimization functionality. 

 
Keywords: Knowledge tracing, educational data mining, recurrent neural networks, prior 

knowledge, regularization 

 

 

1. Introduction 

 
Online e-learning systems have rapidly grown in popularity in recent years. Students with different 

levels of understanding no longer need to be taught the same material in a classroom and can instead 

learn what is best suited for their knowledge level as predicted by a computer, based on their answers 

to past questions. By analyzing the accumulated big data, courses and assignments can be tailored for 

the best learning efficiency. Two examples of widely used e-learning platforms are intelligent tutoring 

systems (ITSs) and massive open online courses (MOOCs). With these systems, students are 

recommended which courses or lessons to take on the basis of their interaction with the system 

(Adamopoulos, 2013; Feng et al., 2009).  

Knowledge tracing (KT) is the task of modeling students' academic abilities (Corbett and 

Anderson, 1994). Given a sequence of a student's learning history, the task is to predict the probability 

that he/she will answer the next question correctly. Bayesian knowledge tracing (BKT) handles this task 

by using a stochastic model. One of its merits is that the obtained parameters are easy to interpret. 

However, BKT requires human professionals to design the stochastic model carefully. Deep knowledge 

tracing (DKT) is an alternative approach that has become very popular in recent years (Piech et al., 

2015). One of its strengths is that it does not require professionals to design its model parameters, as in 

BKT. It uses a recurrent neural network (RNN) (Zaremba et al., 2014) to capture the underlying 

structure of the students' understandings. 
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In this paper, we examine a problem of DKT that has been overlooked: the inverted prediction 

problem, where the student's performance is predicted as low even when he/she is consecutively 

answering questions correctly for some time. Based on this observation, we propose pre-training 

regularization and its unique implementation. Experiments showed that our proposed method mitigates 

the inverted prediction problem and leads to a higher AUC score. Furthermore, we developed a 

framework for training DKT based on our proposed method, together with easily accessible 

hyperparameter optimization functionality. Such functionality is especially valuable since it has not 

been available in previous implementations of DKT. The main contributions of this paper are as follows.  

 

- We identify a unique problem in knowledge tracing, the inverted prediction problem, that we observe 

when making predictions using DKT. We propose a quantitative way of measuring its severity. 

 

- We propose to use pre-training regularization and its specific implementation to overcome the inverted 

prediction problem. The proposed method also improved the AUC of the prediction results. 

 

- We developed a framework for training DKT with pre-training regularization. Unlike existing DKT 

frameworks, our system contains user-friendly tools for hyperparameter optimization. The framework 

is open source and can be downloaded from the following repository. 

 

https://github.com/qqhann/KnowledgeTracing 

 

 

2. Related Work 

 
2.1 Bayesian Knowledge Tracing 

 
Many authors have pointed out that considering academic skills acquired by solving problems is crucial 

in knowledge tracing (Shepard, 1991; Resnick and Resnick, 1992; Cen et al., 2006). Bayesian 

knowledge tracing (BKT) was initially introduced by Corbett et al., 1994. It uses a binary stochastic 

variable for each knowledge concept (KC): understanding or not understanding. KC is a general term 

that represents a unit of knowledge, skill, or ability. In BKT, the probability of stochastic variables 

representing a KC is updated over time using hidden Markov models (HMMs). BKT represents the 

process of learning using probabilities of already knowing, guessing, acquiring, or slipping related to 

KCs. Based on these probabilities, BKT estimates a student's knowledge acquisition process over time. 

However, commonly used models in BKT are often oversimplified and rely on unrealistic assumptions, 

such as assuming that students will never forget what they have learned or that KCs are mutually 

independent and acquiring one KC will not affect the ease of acquiring other KCs. 

Extensions of BKT include contextually modeling guessing and slipping (d. Baker et al., 2008), 

considering item difficulty (Pardos and Hefferman, 2011), and using student-specific parameters for 

individualization (Yudelson et al., 2013). There have also been proposals to reconsider the 

representation parameters of student abilities (Ritter et al, 2009). Wilson et al., 2016 showed that 

Hierarchical Item Response Theory (HIRT) and Temporal Item Response Theory (TIRT) could 

improve the performance if contextual information is used correctly. 

 
2.2 Deep Knowledge Tracing 

 
Deep knowledge tracing (DKT) was proposed by Piech et al., 2015. The model uses a recurrent neural 

network (RNN), especially a long short-term memory (LSTM) network. Unlike BKT that required 

domain specialists to adopt pedagogical knowledge into the model structure, DKT can learn it based on 

data. Although the trained parameters are difficult to interpret, it achieves a higher prediction accuracy. 

The RNN model forms the basis of DKT and is formulated as 

 

             𝒉𝑡 = tanh⁡(𝑾ℎ𝑥𝒙𝑡 +𝑾ℎℎ𝒉𝑡−1 + 𝒃ℎ),          𝒚̂𝑡 = 𝝈(𝑾𝑦ℎ𝒉𝑡 + 𝒃𝑦),                     (1) 
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where the initial 𝒉0 is a randomly generated hidden state vector, 𝑾 is the weight, and 𝒃 is the bias. 𝝈 

is a 𝑄 -dimensional-vector-valued function whose components are the sigmoid function. 𝑄  is the 

number of knowledge concepts (KCs). 𝑡 is a time step. The student answers one question at each time 

step. 𝒙𝑡  is encoded vector of (𝑞𝑡, 𝑎𝑡) at time step 𝑡, where 𝑞𝑡  is the KC that the question at time 𝑡 
belongs, and 𝑎𝑡 is the correctness of the answer, which is 0 when the student answered the question 

incorrectly and 1 if he/she answered it correctly. Figure 1 shows the structure of the DKT model. 

DKT has been actively investigated as a state-of-the-art approach to knowledge tracing (Xiong 

et al., 2016; Khajah et al., 2016; Yang et al., 2017; Sapountzi et al., 2018). In recent works, various 

shortcomings of DKT have been pointed out. Yeung and Yeung (2018) observed the waviness problem 

and reconstruction problem. Some extensions of DKT try to use more detailed study logs to achieve 

better results Zhang et al., 2017. Although more recent models have shown improvements over vanilla 

DKT, many still use an LSTM-based DKT as their base model. Therefore, we chose the vanilla DKT 

model as the baseline in this study and examined it in detail to identify fundamental issues. 

Since DKT models are based on neural networks, it is not clear how one can incorporate prior 

knowledge about a student's learning process into the models. Unlike BKT, there is no systematic way 

of using a prior distribution. The aim of the current paper is to propose the use of pre-training as a way 

of introducing prior knowledge into DKT models. For each 𝑡, 𝒙𝑡 = (𝑞𝑡 , 𝑎𝑡) is the 2-dimensional input 

vector, 𝒉𝑡 is the hidden state vector, and  𝒚̂𝑡 is the 𝑄-dimensional output vector, where 𝑄 is the number 

of knowledge concepts present in the dataset. The 𝑘-th component of  𝒚̂𝑡  represents the estimated 

probability that the student answers correctly at time 𝑡 + 1 to a question that belongs to knowledge 

concept 𝑘. The LSTM cell contains the weight 𝑾 that is optimized by training. The LSTM cell and the 

weight is shared across time 𝑡. 
 

 

3. Method 

 
3.1 Inverted Prediction Problem 

 

When examining the DKT model's prediction results, we often found that when a student is 

consecutively answering all questions correctly, his/her predicted performance (the probability that 

he/she will answer the next question belonging to the same knowledge concept correctly) is lower than 

that of students consecutively answering all questions incorrectly. We can roughly assume that once a 

knowledge concept (which represents a skill) is acquired, it is not lost easily. Therefore, the 

phenomenon of the decreasing predicted performance for questions belonging to a knowledge concept 

is counterintuitive. It suggests that the trained model does not represent the real mechanism of the 

student's learning process. We named this phenomenon, the inverted prediction problem. 

 
Figure 1. Schematic Diagram of DKT. 

 

 The opposite phenomenon maybe happening as well, where a DKT is unnecessarily optimistic 

and predicting that the student is more proficiently acquiring knowledge concepts than he/she really is. 

However, since such a phenomenon is harder to observe and quantify than the inverted prediction 

problem, we did not target it in the current paper. 

Since the DKT model is a neural network, it is difficult to determine the cause of the 

phenomenon by analyzing its parameters. We chose to investigate it further by observing how the 

trained network responds to synthetic data. We created a synthetic sequence representing a student 
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answering all questions correctly for a specific knowledge concept (KC). The length of the sequence is 

set to 𝑇. We call this sequence the oracle student, following Ding et al., 2019. The opposite is the totally 

failing student who answers all questions incorrectly. 

To interpolate between the oracle and totally failing students, we created sequences where all 

questions were answered incorrectly up to a certain point, then the later questions are all answered 

correctly. These sequences represent students failing up to a certain point but then acquiring the 

necessary knowledge (skill) to solve problems and start answering correctly. Note that in real data, 

elements in a sequence belong to different KCs. In contrast, we used a synthetic sequence where all 

questions belong to a single KC 𝑞. 

 

𝒔0
𝑞
= ((𝑞, 0), (𝑞, 0), … , (𝑞, 0), (𝑞, 0), (𝑞, 0)) 

𝒔1
𝑞
= ((𝑞, 0), (𝑞, 0), … , (𝑞, 0), (𝑞, 0), (𝑞, 1)) 

𝒔2
𝑞
= ((𝑞, 0), (𝑞, 0), … , (𝑞, 0), (𝑞, 1), (𝑞, 1)) 

… 

𝒔𝑇−1
𝑞

= ((𝑞, 0), (𝑞, 1), … , (𝑞, 1), (𝑞, 1), (𝑞, 1)) 

𝒔𝑇
𝑞
= ((𝑞, 1), (𝑞, 1), … , (𝑞, 1), (𝑞, 1), (𝑞, 1)) 

 

We can formalize such sequences as: 

 

𝒔𝑘
𝑞
= ((𝑞, 𝑎1), (𝑞, 𝑎2),… , (𝑞, 𝑎𝑇))    (2) 

          𝑎𝑡 = 1⁡if⁡𝑡 > 𝑇 − 𝑘, and⁡𝑎𝑡 = 0⁡otherwise, 

 

where 𝑘 is an integer in [0,1, … , 𝑇], and 𝑞 represents a KC. 𝑎𝑡 is a Boolean value representing whether 

the student answered the question correctly or not at time 𝑡. In other words, when 𝑎𝑡 = 0, the student 

answered a question belonging to 𝑞  incorrectly at time 𝑡 , and when 𝑎𝑡 = 1 , he/she answered it 

correctly. 𝒔0
𝑞
 represents a totally failing student, and 𝒔𝑇

𝑞
 represents an oracle student. We trained the 

LSTM baseline model using real data from ASSISTments 2009 (Feng et al., 2009). We then added 

synthetic data to the model and examined the predicted performances of the students. Synthetic 

sequences consist of 𝒔0
𝑞

 to 𝒔𝑇
𝑞

 for each KC. We used ⁡𝑇 = 20 in the following experiment. 

 
Figure 2. Predicted Performance Using Synthetic Sequences 𝒔𝑘

𝑞
 Defined by Eq. 2.  

 

The horizontal axes represent 𝑘 and the vertical axes are the predicted performance 𝑦̂. (a) is close to 

ideal dynamics since the predicted performance is nearly a monotonically increasing function of 𝑘. (c) 

is sub-optimal since the predicted performance is nearly a monotonically decreasing function of 𝑘. (b) 

is not as bad as (c) but is still sub-optimal. 

In Figure 2, we use three values for KC 𝑞 to explain the inverted prediction problem. The graph 

in (a) shows the result for KC with ID 30 (𝑞 = 30). When provided with the synthetic sequences  𝒔0
𝑞
 to 

𝒔𝑇
𝑞

 the model predicted that the longer the student correctly answered questions for the KC, the more 

likely he/she would be to answer the next question correctly. The result shown here matches our 

intuition about how students would perform. We call this property about students' predicted 

performance the proportional prediction rule since the predicted performance is proportional to how 

they performed earlier. 

Unfortunately, the model did not learn this rule for all KCs. The graph shown in (c) is the worst-

case example, where the predicted performance is a decreasing function of 𝑘. It means that when a 

student continued to answer questions correctly longer, the model predicted that his/her performance 
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would be lower. Graph (b) is not as bad as (c) but is still sub-optimal because the predicted performance 

is a partially decreasing function of 𝑘. Although the model can distinguish between the oracle student 

and the failing student, it does not predict well for students performing in between. The inverted 

prediction problem shows one limitation of DKT when the available samples are limited. We use the 

problem to show how pretraining by prior knowledge can lead to better results than vanilla DKT.   

 

3.2 Quantification of the Inverted Prediction Problem 

 

To measure the severity of the inverted prediction problem, we propose two measures 𝑟1  and 𝑟2 

formulated as 

𝑟1 =
1

𝑄
∑ 𝟏{𝑦̂(𝒔𝑇

𝑞
,𝑞)>𝑦̂(𝒔0

𝑞
,𝑞)}

𝑄
𝑞=1      (3) 

𝑟2 =
1

𝑄
∑ 𝑁𝐷𝐶𝐺 (𝑦̂(𝒔0

𝑞
, 𝑞), … , 𝑦̂(𝒔𝑇

𝑞
, 𝑞), (0,… , 𝑇)) .

𝑄
𝑞=1    (4) 

𝑟1 gives a rough approximation of how well the model avoids the inverted prediction problem. Here 𝟏𝑷 

is the characteristic function whose value is 1 when a proposition 𝑷  is true, and 0 otherwise. 𝑞 

represents a KC, and 𝑄 is the total number of KCs. 𝒔𝑘
𝑞
 is a synthetic sequence defined in Equation 2. 

𝑦̂(𝒙, 𝑞)  is the output of the DKT model, representing the student's predicted performance when 

sequence 𝒙 is the input for KC 𝑞. 𝑟1 can be used to distinguish graphs (a) and (c) in Figure 2 but cannot 

be used distinguish (a) from (b). 

Therefore, we propose 𝑟2 that considers the overall dynamics of the predicted performance. 

Ideally, the predicted performance should be higher when the student answers more questions correctly. 

To quantify how well a model follows this pattern, we used the normalized discounted cumulative gain 

(NDCG) score, which is commonly used in evaluating ranking prediction (Wang et al., 2013). NDCG 

is a normalized measure of similarity between two orderings. 

NDCG is calculated by dividing the discounted cumulative gain (DCG) by the ideal discounted 

cumulative gain (IDCG), that is, 𝑁𝐷𝐶𝐺 = 𝐷𝐶𝐺/𝐼𝐷𝐶𝐺.  

Let 𝑛-dimensional vector 𝒂 represent a sequence of numbers, 𝑎1, … , 𝑎𝑛 , and 𝑛-dimensional 

vector 𝒃 represent a sequence of numbers, 𝑏1, … , 𝑏𝑛. The numbers are not necessary in increasing or 

decreasing order. DCG is a similarity measure between two orderings defined as DCG(𝒂, 𝒃) =

⁡∑
𝜌𝑖

log2(𝑖+1)
𝑛
𝑖=1  where 𝜌𝑖 is the graded relevance score (Sawade et al., 2013) of 𝒂 and 𝒃 at position 𝑖.  

IDCG(𝒂, 𝒃) is equal to DCG(𝒂, 𝒃) when 𝒂 and 𝒃 can be sorted using the same permutation  𝜌, 

that is, both 𝜌(𝒂) and 𝜌(𝒃) are sequences in increasing order; in other words, IDCG(𝒂, 𝒃) equals to 

DCG(𝒂, 𝒃) when 𝑎𝑖 ≤⁡𝑎𝑗 if and only if 𝑏𝑖 ≤⁡𝑏𝑗 for all pairs of indices 𝑖 and 𝑗. In our case, such a case 

corresponds to 𝑦̂(𝒔𝑖
𝑞
, 𝑞) ≤ 𝑦̂(𝒔𝑗

𝑞
, 𝑞) for all 𝑖 ≤ 𝑗. 

When the sequence 𝑦̂(𝒔0
𝑞
, 𝑞), … , 𝑦̂(𝒔𝑇

𝑞
, 𝑞)  is monotonically increasing for all 𝑞 , 

𝐷𝐶𝐺 (𝑦̂(𝒔0
𝑞
, 𝑞),… , 𝑦̂(𝒔𝑇

𝑞
, 𝑞), (0, … , 𝑇)) is equal to 𝐼𝐷𝐶𝐺 (𝑦̂(𝒔0

𝑞
, 𝑞), … , 𝑦̂(𝒔𝑇

𝑞
, 𝑞), (0,… , 𝑇)), so 𝑟2 takes 

the maximum value, which is 1. 𝑟2 is large when DKT predicts that students who answered correctly 

longer will perform better for the next problem than students who answered correctly for a shorter 

period. 𝑟2 is small when the opposite happens, that is, when the inverted prediction problem occurs. 

 
3.3 Pre-training Regularization 

 
To avoid the inverted prediction problem, we want to use prior knowledge that when a student continues 

to answer questions correctly for some time, his/her predicted performance will not suddenly drop. In 

transfer learning, the model is first pre-trained using a large dataset for a common task. The model is 

then further trained using a more specific dataset or a loss function representing a more specific task 

(Pan and Yang, 2010). We extend the idea of transfer learning by pre-training the model using synthetic 

data. In our proposed pre-training regularization, we generate synthetic data using simple rules that 

represent our prior knowledge about the process in which a student acquires knowledge. 

We can gain some insights about pre-training regularization by comparing it with Bayesian 

modeling. In Bayesian modeling, the parameters of a prior distribution often correspond to pseudo-

observations. For example, consider using a multinomial distribution as a generative model 𝑝(𝒙|𝝁) 
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where 𝒙 and 𝝁 are 𝑑-dimensional vectors. Its conjugate prior 𝑝(𝝁|𝜶) is the Dirichlet distribution. The 

posterior distribution is 

𝑝(𝝁|𝒙, 𝜶) =
𝑝(𝒙|𝝁)𝑝(𝝁|𝜶)

𝑝(𝒙|𝜶)
= (∏𝜇ℎ

𝑥ℎ

𝑑

ℎ=1

)(
1

𝐵(𝜶)
∏𝜇ℎ

𝛼ℎ−1

𝑑

ℎ=1

)
1

𝑝(𝒙|𝜶)
=

1

𝑝(𝒙|𝜶)𝐵(𝜶)
∏𝜇ℎ

𝑥ℎ+𝛼ℎ−1

𝑑

ℎ=1

 

where 𝐵(𝛂)  is the Beta function. The maximum a posteriori (MAP) estimate of 𝝁  maximizes 

𝑝(𝝁|𝒙,𝜶). Using the method of Lagrange multipliers to fulfill the constraint ∑ 𝜇ℎ
𝑑
ℎ=1 = 1, the estimate 

for 𝜇ℎ can be obtained by 

𝜇̂ℎ =
𝑥ℎ + 𝛼ℎ − 1

∑ (𝑥⁡𝑢 + 𝛼𝑢 − 1)𝑑
𝑢=1

. 

In the above equation, the hyper-parameter 𝛼ℎ  is added to the observation 𝑥ℎ  which represents the 

number of occurrences of the event indexed by ℎ. Incrementing 𝛼ℎ by one corresponds to increasing 

𝑥ℎ by one, which means observing one extra occurrence of the event ℎ. For this reason, 𝛼ℎ is called a 

pseudo-observation. Unlike real observations, pseudo-observations can take any non-negative real 

value. This correspondence between a hyper-parameter and a pseudo-observation is commonly seen in 

many Bayesian models. Since pre-training by synthetic data corresponds to adding extra observations 

to real data, it amounts to adding pseudo-observations to real data. In this way, pre-training corresponds 

to using prior knowledge. As DKT is based on deep learning rather than Bayesian modeling, its hidden 

layers and nodes can be considered as latent stochastic variables, and the probabilistic interpretation of 

deep learning can thus be a powerful analysis tool. 

We propose to use a specific example of pre-training regularization as a remedy to the inverted 

prediction problem. We pre-trained DKT using monotonic synthetic sequences. Specifically, we 

generated synthetic sequences 𝒔0
𝑞

, 𝒔1
𝑞

,  …, 𝒔𝑇
𝑞

 (defined by Equation 2) for all KCs and used them to train 

the DKT network before training it with real data. 

Another way to look at pre-training regularization is that it brings the output closer to a 

monotonically non-decreasing step function expressed as 𝒔0
𝑞

 to 𝒔𝑇
𝑞

. For each KC, the model is pre-

trained using sequences 𝒔0
𝑞

 to 𝒔𝑇
𝑞

 repeatedly. We trained the model using synthetic data for all KCs for 

a certain number of epochs (e.g., 10 or 150) before training it with real data. By providing the network 

with sequences having a simple structure in pre-training, we expect the model to prefer simple dynamics 

when making predictions. Since this method does not require designing a prior distribution, it can be 

adapted to any model with ease. No domain knowledge is required, except the assumption that once a 

student acquires a knowledge concept, it is unlikely that he/she will lose it within a short time span. 

 

 

4. Experiments 

 
4.1 Datasets 

 

ASSISTments 2009-2010: In the experiment, we used the ASSISTments skill builder dataset 2009-

2010 (Feng et al., 2009). ASSISTments is an online tutor system that helps teachers access students' 

assessment information while studying math on the system. The dataset contains records of 4,417 

students solving 328,291 problems. Each problem is manually tagged with a single skill concept 

required to solve it, out of 110 skill concepts in total.  

 

ASSISTments 2015: ASSISTments 2015 is a dataset of 19,840 students solving 683,801 problems 

from 100 KCs. 

 

Simulated-5: Simulated-5 is a dataset consisting of answer logs from simulated students based on the 

Item Response Theory (IRT) (Wilson et al., 2016). It contains records from 2,000 simulated students 

solving problems from 50 KCs.  

 

Statics 2011: Statics 2011 is a dataset from students taking an engineering statics course. It has data of 

333 students' 189,297 interactions on 1,223 KCs. 
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4.2 Results 

 

Experimental results are summarized in Table 1. For comparison, we reconstructed the DKT model 

proposed by Piech et al., 2015. The baseline DKT is set up based on the previous research. We used a 

hidden dimension size of 200 and a batch size of 128. We set the learning rate to 0.1. We optimized 

hyperparameters using 5-fold cross-validation for ASSISTments 2009, ASSISTments 2015, and Statics 

2011. We did not use cross-validation for Simulated-5 since we wanted to test it using the same 

condition as Piech et al., 2015. Cross-validation was carried out at the student level, that is, there is no 

student appearing in multiple folds.We searched for the best number of iterations for pre-training using 

validation data. We found that in most cases, 10 iterations were sufficient. We also tested 150 iterations 

to show that if there is a significant improvement by further pre-training.  

Table 1 shows that the values of 𝑟2 consistently increased with pre-training, suggesting it to be 

a better indicator than 𝑟1. Pre-training improved AUC for most datasets. Pre 0 is without pre-training, 

pre 10 is with pre-training for 10 epochs, and pre 150 is with pre-training for 150 epochs. The values of 

𝑟1 are followed by the number of KCs in the corresponding dataset, which is the maximum possible 

value that 𝑟1 can take. 𝑟2 shows the mean value with standard deviation. Numbers in bold font are 

results that outperformed the baseline (DKT pre 0). The distribution of values for AUC comes from 

cross-validation. The distribution of values for 𝑟2 represents the standard deviation of the terms in the 

sum in Equation 2. 

 

Table 1. Comparison of Area-under-the-Curve (AUC), 𝑟1 and 𝑟2 

 

Dataset Model Test AUC 𝑟1 𝑟2 

ASSISTments 2009 DKT pre 0 0.802399 ± 0.002135 91 / 110 0.8858 ± 0.1210 

ASSISTments 2009 DKT pre 10 0.802763 ± 0.001107 105 / 110 0.9162 ± 0.1031 

ASSISTments 2009 DKT pre 150 0.805398 ± 0.000801 106 / 110 0.8974 ± 0.1125 

ASSISTments 2015 DKT pre 0 0.703117 ± 0.001366 99 / 100 0.9243 ± 0.0914 

ASSISTments 2015 DKT pre 10 0.703355 ± 0.000890 99 / 100 0.9211 ± 0.0967 

ASSISTments 2015 DKT pre 150 0.705414 ± 0.001263 95 / 100 0.9278 ± 0.0926 

Simulated-5 DKT pre 0 0.777116 26 / 50 0.7923 ± 0.1306 

Simulated-5 DKT pre 10 0.776778 44 / 50 0.8948 ± 0.1156 

Simulated-5 DKT pre 150 0.773313 46 / 50 0.8908 ± 0.1139 

Statics 2011 DKT pre 0 0.787167 ± 0.000661 639 / 1223 0.7788 ± 0.1496 

Statics 2011 DKT pre 10 0.794149 ± 0.003777 934 / 1223 0.8855 ± 0.1267 

Statics 2011 DKT pre 150 0.792491 ± 0.000426 716 / 1223 0.8095 ± 0.1582 
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Figure 3. Prediction accuracy for KCs in ASSISTments 2009 when pre-trained using synthetic 

𝒔𝑡
𝑞
 defined in Equation 2. With pre-training, the inverted prediction problem occurred less. Blue 

is the baseline and orange is DKT with pre-training for 10 epochs. KCs are sorted by 𝑦̂(𝒔𝑇
𝑞
) −

𝑦̂(𝒔0
𝑞
). Vertical axis is the prediction accuracy for the same KC as used for the synthetic input. 

Horizontal axis represents knowledge concept 𝑘. 

 

 
Figure 4. Quantitative inverted prediction (hard) effect with NDCG score distributions. Bars 

represent the histograms and solid lines are their kernel distribution estimates (KDE). 

Horizontal axis shows NDCG scores and vertical axis shows frequencies. 

 

 
Figure 5. Learning curves of AUC for validation data. Solid lines represent the average of 

cross-validation. Shaded regions indicate 1-sigma intervals. Horizontal axis indicates the 

number of epochs and vertical axis the AUC scores. 

 

4.3 Discussion 

 

By pre-training, the model's parameters presumably reached a better starting position before being 

supplied with real data. The starting position has a property that when a student correctly answers 

several questions for a specific KC in a row, he/she is likely to answer another question with the same 

KC correctly. The model may learn this property if the dataset is large. However, the amount of data in 

educational data mining is often limited, so providing the property as prior knowledge is an effective 

strategy. 

 

 
Figure 6. Dependence of 𝑟1 and 𝑟2 on sequence length in ASSISTments 2009. Horizontal axis is 

the sequence length and vertical axis is the value of 𝑟1 and 𝑟2. Solid lines show the average 

prediction probability for all KCs. Shaded regions represent 𝜇 ± 𝜎 (i.e., mean ± standard 

deviation). 
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The results show that pre-training regularization had a positive effect on the predictive 

performance as well. With pre-training, the starting AUC for real data training is higher. The model 

also got a higher maximal validation AUC. For ASSISTments 2009, ASSISTments 2015, and Statics 

2011, improvements in AUC scores were 0.2 ~ 0.7 %, which are significant considering the scores are 

already high (around 70 ~ 80 %). This result suggests that it had a better training starting point, resulting 

in a more global minimum and a better score. Simulated-5 is a simulated dataset and may not correctly 

reflect the learning dynamics of real students. Further investigation is needed to explain why the test 

AUC decreases with pretraining. For Statics 2011, pretraining 10 times produced better test AUC than 

pretraining 150 times. Such a decrease in test AUC can be explained by prior working too strong. 

Optimizing the amount of pretraining is a necessary step that we should explore. 

We also examined the 𝑟2  score further. We calculated the NDCG score using synthetic 

sequences for each KC, as described in Section 3. The NDCG scores can be visualized as a distribution. 

With pre-training, the number that equals or nearly equals 1 has increased. It means that the number of 

predictions having a perfect order has increased. Also, the distribution shifted toward 1. It suggests that 

our method made the prediction results better for most KCs.   

Figure 3 shows the prediction results for synthetic inputs. It shows improvements for prediction 

results having counter-intuitive values of 𝑟1 and 𝑟2. The line plot gets smoother as the number of correct 

answers in the synthetic sequence increases from 0 to 20.  

In Figure 4, the result for Simulated-5 indicates an interesting feature: without pre-training 

regularization, its 𝑟1 score is only about half. It suggests that the dataset may have failed to reproduce 

the proportional prediction rule and that the DKT model can still perform well without the data coming 

from real human responses. In contrast, the model's AUC performance on Simulated-5 data dropped 

when using pre-training regularization. 

Figure 5 shows the learning curves. When using pre-training, the model had a higher AUC at 

the start of the training iteration, and it continued to get a higher AUC than the baseline. It means that 

the model can get a considerable gain at an early stage. From another viewpoint, the result suggests that 

the vanilla DKT may be using the first few epochs just to acquire the proportional prediction rule. It 

would be more efficient to make the DKT model learn the rule using a few epochs of synthetic data 

since they're much smaller in size and take less time to train. Although our proposed method requires 

some epochs of pre-training, this is not a massive disadvantage in terms of the training time since it 

scales with the number of KCs, which is a much smaller number than the size of the training data. Also, 

the model becomes less likely to overfit, as indicated in the later epochs. 

Figure 6 shows how 𝑟1 and 𝑟2 changed with respect to the sequence length 𝑇. The model with 

pre-training for 10 epochs generally had higher 𝑟1 and 𝑟2 than the model without pre-training. As 𝑇 

increased, both 𝑟1 and 𝑟2 decreased. This suggests that the inverted prediction problem becomes more 

significant for longer sequences. 

 

 

5. Conclusion 
 

In this paper, we pointed out a new difficulty in DKT: the inverted prediction problem. To alleviate the 

problem, we proposed pre-training regularization to train the model using synthetic data before 

providing real data to the model. 

The method is easily adapted to any model since it does not require model adjustment or 

introducing a prior distribution, as done in Bayesian modeling. The experiments showed that pre-

training regularization can reduce the effect of inversely proportional predictions quantified using two 

indicators, 𝑟1 and 𝑟2. It also made the model generalize better and resulted in higher AUC scores. 

In the real world, there are various ways of utilizing the predicted academic abilities of students. 

It is not enough to evaluate the model by its accuracy when teachers or students ask to see the prediction 

scores. The prediction in such a situation should match the user's intuition, as otherwise, the system 

cannot gain much trust from practitioners of education. It is crucial to investigate the prediction in detail 

and check it to human intuition. 

Our method's strength is that it can incorporate various types of prior knowledge through the 

design of simulation algorithms. It is advantageous when we want to use a prior distribution that has no 

efficient sampling algorithm. It is also easier for education researchers to incorporate their knowledge 
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on how students learn. Researchers only need to provide rules or specific examples and put them into 

the DKT model. They are not required to have in-depth knowledge of probability theory. For example, 

they can generate samples reflecting a tendency that a certain KC is likely to be acquired after another 

KC. They do not need to represent it as a stochastic model. If the prior knowledge is correct, it can 

increase the DKT model's performance, for example, in higher AUC, as it did in our case with the 

proportional prediction rule.  

One limitation of our approach is that problems must be assigned to properly defined skills. If 

the assignments are unreliable, the underlining assumption of monotonic increase of the scores cannot 

be used. In future work, we plan to introduce knowledge state vectors (KS vectors) used in our previous 

work to represent the levels of skill acquisition (Pan and Tezuka, 2020). Since KS vectors can take 

continuous values, it can add more flexibility to the model than representing skill acquisition by binary 

values, as we did in this work. We also consider comparing how the order of supplying synthetic and 

real data may affect the performance.  Preliminary experiments showed that supplying synthetic data 

before real data was more effective than supplying them after real data. We want to investigate this 

difference further and examine its validity for different types of tasks and models. 
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