
Rodrigo, M. M. T. et al. (Eds.) (2021). Proceedings of the 29th International Conference on Computers in

Education. Asia-Pacific Society for Computers in Education

Conceptual Level Comprehension Support of

the Object-Oriented Programming Source-Code

Using Kit-Build Concept Map

Nawras KHUDHURa*, Pedro Gabriel Fonteles FURTADOa, Aryo PINANDITOa, Shimpei

MATSUMOTOb, Yusuke HAYASHIa & Tsukasa HIRASHIMAa
aGraduate School of Advanced Science and Engineering, Hiroshima University, Japan

bFaculty of Applied Information Science, Hiroshima Institute of Technology, Japan
*nawras@lel.hiroshima-u.ac.jp

Abstract: Object-oriented programming (OOP) is a modern model of programming languages

and an important module for many programming courses in academics. Not only do educators

have trouble teaching OOP concepts but students are also reported to having trouble

comprehending those concepts. The difficulty lies in dealing with abstract concepts and finding

a relationship between the textbook explanations and the application of these concepts. Several

works try to approach this problem, but they lack connecting the OOP concepts with its

implementation in the source-code. In this research, we propose a new visualization form using

concept maps to combine the OOP concepts with its’ source-code to promote OOP concept

comprehension. The proposed visualization is called the conceptual representation of the

source-code (CRS). CRS unites the source-code statements and the OOP concepts into one

comprehensible diagram. A concept map recomposition activity with Kit-Build is used to

implement the CRS. We have conducted an experiment on university students to verify the

learning effects and use of the proposed method. The results show a significant improvement in

immediate learning by comparing before/after activity test-scores. In addition, students showed

a positive impression and intention about using the tool during their studying of OOP by

answering a questionnaire. The research findings shed light on a promising aspect of teaching

OOP concepts in programming courses.

Keywords: Concept comprehension, conceptual level representation, concept map, object

oriented programming, OOP concepts, kit build, concept visualizer.

1. Introduction

Computer programming is the main subject of study curriculum in computer-science related fields and

even some high-schools that provide programming classes. Being a major part of computer

programming, object-oriented programming (OOP) is a recent paradigm of programming languages. In

OOP, programs consist of classes and objects. This structure is beneficial to divide problems into

smaller pieces thus making the problem-solving more natural and the code reusable. OOP consists of

several strongly interrelated concepts. Armstrong (2006) lists the concepts as object, class, method,

message passing, inheritance, polymorphism, encapsulation, abstraction, instantiation, and modeling.

Teaching these concepts and its comprehension in terms of actual coding is shown to be a difficult task

for both educators and students.

The difficulty of OOP concept comprehension is identified in the literature (Kaczmarczyk et

al., 2010; Sorva, 2018). Relational problems are also described where a study shows students find it

difficult to comprehend the relationship among different concepts (Sajaniemi et al., 2008). Lack of

active practice and suitable teaching tools are one of the reasons why it is hard to teach students about

OOP concepts (Sarpong et al., 2013).

One familiar way to represent some of the OOP concepts is to use UML class diagrams. But in

UML, the general explanations of the OOP concepts and how it is related to the source-code is not

represented. Students are left with a code structure which is helpful but not enough to comprehend OOP

concepts especially when students are less experienced with UML class diagrams (Gravino et al.,

315

2015). In some courses, program visualizers (PV) are implemented as a tool to support OOP concept

comprehension. PVs are tools that show the run-time behavior of a program when executed. Despite its

usefulness, PVs could not fill the gap of OOP concept comprehension, mainly because of the low

engagement structure of the PV and its limitation in visualizing OOP concepts and its’ relationships

(Sorva et al., 2013). Thus, educators need a tool to create conceptual level activities that can correlate

the general OOP concept explanations with the actual source-code implementation effectively.

To approach this goal, we investigate a way to combine the OOP concepts and the source-code

into one diagram using concept map (CMAP) (Novak, 2005). We call this combination representation

Conceptual Representation of The Source-code (CRS). Creating such a relational view between OOP

concepts and its’ actual use in source-code is not proposed before to the extent of our knowledge. By

this combination, we aim to expose the learner to a productive view of the theory and practice of OOP

concepts and encourage learners to interact with it actively. One issue with conventional CMAP is that

each learner tends to construct the map for the targeted knowledge differently since the map depends on

learners' conceptual understanding which can vary from learner to learner. One way to transform

concept mapping into a more manageable and controllable yet effective activity for educators is using

Kit-Build (KB) recomposition (Hirashima et al., 2015). KB is one type of CMAP that focuses on expert

map recomposition instead of free map creation. In KB the learners are provided with a kit of concepts

and links. Learners’ goal is to recompose the CMAP in the same way the expert built it. This activity is

called concept map recomposition.

In this paper, we investigate the possibility of using KB concept map to create an activity that

unifies OOP source-code with its concepts i.e., implementing CRS. In addition, we aim to consider its

impact on OOP concept comprehension.

2. Kit-Build Concept Map Recomposition

Concept map was first introduced by Novak (Novak, 2005) to evaluate students’ conceptual learning

and progress. In CMAP, concepts are expressed as nodes. These concepts are then connected to each

other using labels to form a meaningful proposition. It is confirmed by many studies that it can promote

the learning process in a variety of subjects and specialties (Wang and Chen, 2018; Balim, 2013).

CMAP comes in various forms such as scratch map (SM) and closed concept map (CCM)

(Furtado et al., 2019). SM is a traditional concept mapping where learners start from an empty layout

and build the concept map gradually. SM has unconstrained variability as it reflects each individual. In

contrast, CCM provides a limited map building environment where learners are given a selected set of

concepts and labels to choose from while building the map. However, the learners are free to make any

proposition that they assume is valid using the provided set.

A more restricted type of CCM introduced by Hirashima et al. (2015) called Kit-Build (KB).

KB asks learners to recompose the concept map instead of building it. By recompose, it means to

re-connect a concept map from a kit of concepts and links of a pre-built concept map (expert map). The

steps of a simple KB activity are as follows: 1) The expert creates a concept map for a material. 2) The

expert concept map is then decomposed to its basic parts by removing the connections, thus creating a

kit of concepts and links. 3) The kit is given to the learners to recompose it to the expert map. In KB, it

is possible to have an exact map comparison between learners’ map and the expert map since the same

map pieces are used to make learner map and expert map is used as a reference. This comparison allows

instructors to pinpoint the difficult parts of the lecture and give more accurate feedback to the learners

(Sugihara et al., 2012). The validity and reliability of the KB diagnosis tool compared to the traditional

map evaluation have been verified by past research (Wunnasri et al., 2018, 2017). KB also makes it

possible to give automatic feedback to the learners while recomposing the map such as highlighting

different propositions compared to the expert map. Another study showed that using expert map

recomposition let the learners get a broader and deeper knowledge comprehension compared to scratch

map building (Prasetya et al., 2021).

Despite of these many studies about concept maps and particularly KB, there are no

investigations about using it in technical comprehension tasks such as to represent source-code and its

concepts up to the authors' knowledge.

316

In this research, we used KB to implement CRS. The screenshot of the KB is shown in Figure 1.

In KB, labels have two connectors colored red and blue, which appear only when the label is selected.

The red connector refers to the source of the relationship, while the blue connector means the target of

the relationship. Porpositions can be made by connecting these connectors to the concepts. Labels can

make one-to-many relationships with concepts. Hence, the number of connectible targets is shown

inside the blue connectors circle.

Figure 1. Kit-Build Example.

3. CRS Concept Map

The structure of an object-oriented (OO) source-code can be divided into two sections, internal and

external structure. The internal structure refers to the statements of the source-code such as

method/variable definitions and so on. It is explicitly visible to the learner i.e. the learner can just read

through the source-code. Another feature of the internal structure is that it can go differently compared

to another OO source-code, since the structure is the written text itself. In contrast, the external structure

describes the OOP concepts such as inheritance, polymorphism, etc. These concepts are not directly

visible in the OO source-code but its’ implementation is realized in it. Moreover, the “fact”s of these

OOP concepts are not dependent on the written text itself. In this sense, two different OO source-code

can implement these OOP concepts in the same manner.

 The objective of CRS concept map is to visualize both structures in one diagram and act as an

intermediary between the two structures. Bridging these two structures allows the learner to connect the

concepts of OOP to its’ actual implementation in the source-code. Consequently, it can promote the

conceptual interrelationships and how they affect each other. Another use of CRS is to use it as an

evaluation map to measure the quality of an OO source-code by representing a given source-code in

CRS and focus on what OOP concepts cannot be represented. This concludes that learners code does

not implement these OOP concepts.

Figure 2. The Expert Goal-map for Learning OOP Concepts in a Source-code.

Figure 2 shows the proposed implementation of CRS concept map. The concept map is based

on a source-code that implements a set of the OOP concepts1. The source-code consists of two classes

Circle and Cylinder. Both classes contain multiple constructors. The Cylinder class inherits the Circle

class and overrides two methods of Circle, namely area and toString. Concepts included in the

source-code are inheritance, polymorphism, encapsulation, class, and composition. The red and blue

1 https://git.io/JtKt6

317

regions in Figure 2 represents the internal structure of the class Circle and Cylinder respectively.

These basic elements are the parts of the source-code that can be noticed easily by any learner, but it

is not self-explainable. Several propositions are used to create the internal structure. These

propositions act like annotations to support the fundamental source-code comprehension.

After grasping the fundamentals, the next target would be bridging it to the external structure

of the source-code. The propositions outside the colored regions are the key propositions in CRS that

act as a bridge to connect the major sections of the source-code to the OOP concepts. Hence, it

enables the learner to foster the OOP concepts in the practical environment. The bridging propositions

indicate what parts in the source-code represent the corresponding OOP concept. Moreover, CRS

wraps up and provides the big picture of the implemented OOP concepts enticing the learner to track

the interrelationship among different OOP concepts. To give an example, the CRS can tell why

“overriding” can occur when inheritance is implemented, but it is not possible with a standalone class.

The CRS can be extended to target different goals. For instance, an “object” of type Cylinder

can be added to CRS to reveal the access restrictions of an object toward different class variables and

methods. It can also be modified to meet the understanding level of the students by adding more

details of the OOP concepts when it is the first time to introduce OOP concepts.

Figure 3. The Expert Goal-map Adopted in The Experiment.

4. Research Methodology

To investigate the effectiveness of CRS, a quasi-experimental design was utilized. Students performed a

pre-test, recomposed the map, performed the post-test. At the end of the activity, students were asked to

fill in a questionnaire about the activity.

4.1 Participants

The participants were 49 undergraduate third-year university students, majored in computer science.

The experiment was conducted during their regular class and KB is used as a part of class-teaching

material. Thus, we could not prepare a control group. Students were free to discontinue the experiment

at any stage. Particularly, out of 49 students, 31 students completed the experiment and only the data for

those 31 students were included in the analysis.

4.2 Materials

For this experiment, two materials were prepared. The first material was online lecture notes OOP

concepts. The second material was a source-code explained in Section 3. An expert map implementing

CRS was prepared which was about the realized OOP concepts in the given source-code. However, the

map was simplified for this experiment to include fewer concepts and details, since the class time was

very limited. The used expert map in the experiment is shown in Figure 3.

318

4.3 Procedure

The class instructor started the experiment by explaining the KB to the students and let them to build the

training map to get familiar with the tool and its features. After that, students tested for their basic

knowledge about the concepts of OOP given a source-code as a reference by answering multiple-choice

questions about the concepts that were applied in the given source-code. This pre-test session lasted for

5 minutes. Afterward, material about the concepts of OOP given to the students to read and briefly

explained by the instructor in 10 minutes. Then students were asked to recompose the kit using KB in 25

minutes. During concept map recomposition, students were allowed to look at the source-code. The KB

tool had feedback feature to evaluate learners’ map. The feedback reports the wrong propositions made

by the learner that does not exist in the expert map. Students did a post-test afterward.

Figure 4. Comparison of Pre-test Score with Post-test Score.

4.4 Learning Effect of CRS Recomposition on OOP Concept Comprehension

We run the Fligner-Killeen test of homogeneity of variances to make sure there is no selection bias for

students who decided to finish the experiment successfully. The result shows that the students were

homogeneous with a p-value of 0.09639. To measure the learning outcome of using the CRS, we have

compared the post-test scores against pre-test scores. The scores failed the Shapiro-Wilk normality test

due to small number of participants. Thus, we used the Wilcoxon matched-pairs signed-rank test to

measure the difference. Figure 4 shows the comparison results. The medians of pre-test score and

post-test score were 0.33 and 0.66, respectively. A Wilcoxon Signed-rank test showed a significant

difference between the post-test and pre-test scores (W=229, Z=-2.6754, p-value=0.006, r =0.346). The

result suggests that using CRS recomposition can promote learning OOP concepts adequately.

4.5 Students’ Feedback on Applying CRS in The Class

A questionnaire was given consisted of six 6-Likert scale questions to measure the students’ likeness

and expectation regarding the use of the CRS in learning OOP. Students showed a positive impression

in using CRS, showing the average score for likeness and expectation 4.2 and 4.4 respectively. We can

estimate that this activity was a little odd for students since it was different from their usual learning

methods but still useful. The students' expectation for the CRS recomposition is high and positive. The

students mostly agree that this activity will help them in learning OOP concepts effectively.

5. Concluding Remarks

In this study, we have presented a novel way to visualize OOP concepts and combine it to the

OOP-based source-code. The post-test score results showed a significant improvement in students'

OOP concept comprehension after the recomposition activity of the proposed concept map.

Additionally, the questionnaire analysis of students' feedback shows that learning with the proposed

activity is memorable and friendly as well as fun to some extent.

This study raises a new insight toward the perception of researchers and educators on OOP

concept comprehension solutions coupled with source-code. The proposed approach has potential in

various teaching aspects. It can be used in creating OOP-based activities to promote OOP

comprehension. It also allows educators to create conceptual-based activities when teaching OOP.

 One future work is to set a control group to compare it to other similar methods and to

generalize the findings in this study. Another essential future work is considering the CRS as a

319

source-code qualifier in terms of OOP concepts. It can be used by the learners to self-evaluate their

source-code or by the teacher to group-evaluate the learners' source-code.

Acknowledgments

This research is partially supported by JSPS KAKENHI Grant Numbers 19H04227.

References

Armstrong, D. J. (2006). The quarks of object-oriented development. Communications of the ACM, 49(2),

123-128.
Balim, A. G. (2013). Use of technology-assisted techniques of mind mapping and concept mapping in science

education: a constructivist study. Irish Educational Studies, 32(4), 437-456.
Furtado, P. G. F., Hirashima, T., & Hayashi, Y. (2019). Reducing cognitive load during closed concept map

construction and consequences on reading comprehension and retention. IEEE Transactions on Learning
Technologies, 12(3):402-412.

Gravino, C., Scanniello, G., & Tortora, G. (2015). Source-code comprehension tasks supported by UML design
models: Results from a controlled experiment and a differentiated replication. Journal of Visual Languages
and Computing, 28, 23-38.

Hirashima, T., Yamasaki, K., Fukuda, H., & Funaoi, H. (2015). Framework of kit-build concept map for
automatic diagnosis and its preliminary use. Research and Practice in Technology Enhanced Learning,
10(1), 17.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student misconceptions of
programming. SIGCSE’10 - Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, 107-111.

Novak, J. D. (2005). Results and implications of a 12-year longitudinal study of science concept learning.
Research in Science Education, 35(1), 23-40.

Prasetya, D. D., Hirashima, T., And Hayashi, Y. (2021). Comparing two extended concept mapping approaches to
investigate the distribution of students’ achievements. IEICE Transactions on Information and Systems,
E104.D(2):337-340.

Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2008). A study of the development of students’ visualizations of
program state during an elementary object-oriented programming course. ACM Journal on Educational
Resources in Computing, 7(4).

Sarpong, K. A.-M., Arthur, J. K., and Amoako, P. Y. O. (2013). Causes of failure of students in computer
programming courses: The teacher-learner perspective. International Journal of Computer Applications,
77(12).

Sorva, J. (2018). Misconceptions and the beginner programmer. Computer Science Education: Perspectives on
Teaching and Learning in School (pp. 171-187). Bloomsbury Publishing.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems for introductory
programming education. ACM Transactions on Computing Education, 13(4).

Sugihara, K., Osada, T., Hirashima, T., Funaoi, H., & Nakata, S. (2012). Experimental evaluation of kit-build
concept map for science classes in an elementary school. Proceedings of the 20th International Conference
on Computers in Education, ICCE 2012, 17-24.

Wang, S. P., & Chen, Y. L. (2018). Effects of multimodal learning analytics with concept maps on college
students’ vocabulary and reading performance. Educational Technology and Society, 21(4), 12-25.

Wunnasri, W., Pailai, J., Hayashi, Y., & Hirashima, T. (2017). Reliability investigation of automatic assessment
of learner-build concept map with kit-build method by comparing with manual methods. International
Conference on Artificial Intelligence in Education, 418-429.

Wunnasri, W., Pailai, J., Hayashi, Y., and Hirashima, T. (2018). Validity of kit-build method for assessment of
learner-build map by comparing with manual methods. IEICE Transactions on Information and Systems,
E101.D(4):1141-1150.

Wunnasri, W., Pailai, J., Hayashi, Y., & Hirashima, T. (2018). Validity of kit-build method for assessment of
learner-build map by comparing with manual methods. IEICE Transactions on Information and Systems,
E101D(4), 1141-1150.

320

	C1-7_All PDF-Page added-Revised
	C3-All PDF
	17paper_96(PR)

