
Rodrigo, M. M. T. et al. (Eds.) (2021). Proceedings of the 29th International Conference on Computers in 

Education. Asia-Pacific Society for Computers in Education 

 

Integrating Parsons Puzzles with Scratch 
 

Jeff BENDERa*, Bingpu ZHAOb, Lalitha MADDURIa, Alex DZIENAa, Alex LIEBESKINDa & 

Gail KAISERa 
aProgramming Systems Laboratory, Columbia University, USA 

bDepartment of Computer Science, Barnard College, USA 

*jeffrey.bender@columbia.edu 

 
Abstract: We surveyed grade 6-9 teachers to learn teacher perceptions of student engagement with 

computational thinking (CT) and how well their needs are met by existing CT learning systems. The results 

and a literature review lead us to extend the trend of balancing Scratch’s agency with structure to better 

serve learners and reduce burden on teachers aiming to learn and teach CT. In this paper, we integrate 

Parsons Programming Puzzles (PPPs) with Scratch and analyze the effects on adults, who crucially 

influence the education of their children. The results from our small pilot study suggest PPPs catalyze CT 

motivation, reduce extraneous cognitive load, and increase learning efficiency without jeopardizing 

performance on transfer tasks. 
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1. Introduction 

 
In response to a crisis in CS teacher certification and a deficit of student exposure to CS in grades K-12 

(Wilson et al., 2010;  Leyzberg et al., 2017), governments are enacting policies requiring CT in schools  

(Whitehouse.gov, 2016; The Royal Society, 2016). Additional argument (Wing, 2006, 2008) and 

evidence (Grover et al., 2013) provide rationale for ensuring children achieve CT competency during 

the formative cognitive and social development cycles throughout grades K-12. Parsons programming 

puzzles (PPPs), which enable learners to practice CT by assembling into correct order sets of mixed-up 

blocks that comprise samples of well-written code focused on individual concepts, are one approach 

used to introduce CT efficiently  (Parsons et al., 2006; Ericson et al., 2018). 

These scaffolded program construction tasks facilitate learning of syntactic and semantic 

language constructs underlying a CT concept. As the learner solves carefully designed single-solution 

puzzles, she arranges constructs from a curated assortment in a cycle of deliberate practice that exposes 

and addresses misconceptions (Kaczmarczyk et al., 2010; Emerson et al., 2020). Among the correct 

code fragments, she might find distractors which provoke cognitive conflict that reinforces learning 

(Karavirta et al., 2012). The partial suboptimal path distractor type, for example, might tempt a learner 

toward faulty progress without enabling her to solve the problem fully, thereby triggering recognition 

of a misconception and productive backtracking toward the correct solution (Harms et al., 2016). 

Research indicates this structured approach to learning CT can lead to more efficient concept 

learning than alternatives such as learning by tutorial, or writing/fixing code (Harms et al., 2015; 

Ericson et al., 2017; Zhi et al., 2019). To measure efficiency, researchers often leverage cognitive load 

theory, which helps to distinguish between the complexity of the material, the instructional design, and 

the strategies used for knowledge construction. Since PPPs provide constrained problem spaces, they 

can induce lower cognitive load than that experienced when writing code with open-ended agency. 

In the current study, we seek further evidence of their efficiency by integrating PPPs into 

Scratch, a block-based environment initially designed for informal learning that invites exploration, 

collaboration, and knowledge construction through personally meaningful creation (Maloney et al., 

2010). K-8 teachers use Scratch more than any other coding language internationally (Rich et al., 2019), 

resulting in an ecosystem with over 74 million users (MIT Media Lab, 2021), and more research focus 

than any other environment in K-12 from 2012-2018 (McGill et al., 2020). However, historical findings 

indicate Scratchers infrequently demonstrate skill increases over time (Scaffidi et al., 2012), 

misconceive loops, variables, Booleans, nested conditionals, and procedures (Grover et al., 2017, 2018), 

and often adopt habits unaligned with accepted CS practice (Meerbaum-Salant et al., 2011). In a recent 

study of 74,830 Scratch projects, 45% contained at least one bug pattern (Frädrich et al., 2020). Instead 
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of problem-solving algorithmically, Scratchers often engage in bricolage (Harel et al., 1991), which 

involves bottom-up tinkering that does not necessarily prove productive (Dong et al., 2019). 

To balance this agency with structure as recommended in (Brennan, 2013), and to encourage 

the development of desired habits when learning CT concepts without stifling learner creativity, 

researchers have designed external Scratch curricula (Brennan et al., 2014; Franklin et al., 2020), 

created introductory Scratch Microworlds with reduced functionality (Tsur et al., 2018), and devised 

learning strategies based on the Use->Modify->Create pedagogy to scaffold instruction (Salac et al., 

2020). We extend this trend by integrating with Scratch PPPs with explicit goals that offer gameful 

scoring targets and per-block feedback to disincentivize trial-and-error behavior and steer learners 

toward correct solutions. We reason that if learners initially can internalize CT concepts efficiently via 

PPPs, they can better deepen their understanding in less-restrictive interest-driven projects such as those 

described in (Kong et al. 2020) that embrace Scratch's roots in constructionism (Brennan et al., 2014). 

To test this reasoning, we ran a pilot study targeting adults, who comprise a general population 

that might not only benefit from learning CT, but who might most effectively mobilize the advancement 

of teaching and learning CT for all. We investigated the following research questions: R1) what are the 

effects on motivation and cognitive load when training occurs via: PPPs; PPPs with distractors (PPPDs); 

programming with access to all blocks and without feedback (limited-constraint-feedback or LCF)?; 

R2) what are the effects on learning efficiency for training via PPP, PPPD, and LCF?  Although the 75-

participant sample limits the number of statistically significant results, findings indicate: F1) 

participants self-report higher motivation when training via PPPs and PPPDs, and less extraneous 

cognitive load when training via PPPs than via PPPDs or via LCF; F2) participants training via PPPs 

and PPPDs experience increased learning efficiency compared with those training via LCF.  

We first review the background and the required software development. We then document the 

study purpose, formative and summative evaluations, and results before previewing future work. 

 

 

2. Background 

 
Since PPPs emerged in the CS literature as a new form of program completion problem in 2006, the 

community has investigated their strengths and weaknesses. Strengths include: scaffolded support of 

syntax and semantics learning; solvers with prior experience perform better and need less time (Harms 

et al., 2016); quicker grading and less grading variability than code writing problems (Ericson et al., 

2017); easier detection of learning differences between students compared to code writing and code 

fixing problems (Morrison et al., 2016); a moderate correlation between PPP proficiency and code 

writing proficiency in an exam setting (Denny et al., 2008); less completion time required than for code 

writing exercises with equivalent performance on transfer tasks (Ericson et al., 2017; Zhi et al., 2019); 

higher enjoyment and less completion time required than for tutorial users with better performance on 

transfer tasks (Harms et al., 2016); and a lack of significant differences in performance across gender. 

Weaknesses include: constriction of puzzle-design surface to maintain single-solution structure (not 

strictly required, but commonly enforced to maintain strengths); the invitation of trial-and-error 

behavior in PPPs with excessive corrective feedback (Helminen et al., 2013); and a potential ceiling 

effect when feedback guides most learners to solve PPPs correctly, resulting in the need to evaluate 

learner process in addition to learner product when assessing (Helminen et al., 2012). 

The community also has explored differences in learning outcomes resulting from using 

different PPP elements. Evidence suggests that 2D puzzles, in which the student must not only correctly 

order programming constructs but also indent them correctly, are more difficult than 1D (Ihantola et al., 

2011). Similarly, PPPs that conceal the number of lines of code needed for each solution section and 

those that include distractors are more difficult, require more time to complete, and produce higher 

cognitive load during training than those that specify section sizes and those without distractors (Garner, 

2007; Harms et al., 2015). Learning differences continue to emerge when researchers vary these 

elements. For example, learners struggle more when distractors are randomly distributed among the 

correct code constructs than when they are paired with correct constructs (Denny et al., 2008). 

To identify these strengths, weaknesses, and learning differences between PPP elements, 

researchers often leverage Cognitive Load Theory (CLT) (Sweller, 2010). According to CLT, the brain 

provides limited short-term memory and processing capability along with infinite long-term memory, 
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and learning occurs via schema construction and elaboration that leads to automation. Construction 

ensues by combining new, single elements into one larger element, and elaboration follows by adding 

new elements to an existing, larger element. Through intensive practice, individuals can automate their 

processing of these larger elements so that they execute without controlled processing. 

CLT helps distinguish characteristics of and between PPP systems by offering a framework 

with tools to measure the three types of cognitive load experienced: intrinsic, extraneous, and germane. 

The total number of interacting elements perceived by the learner determines intrinsic load; the 

sometimes-impeding organization and presentation of the content determines extraneous load; and the 

instructional features necessary for schema construction determine the germane load. PPP designers 

aim to reduce extraneous load to free learners' capacity to contend with germane load when attempting 

to maximize learning efficiency. For example, the pairing of distractors with correct constructs might 

increase germane load by focusing student attention on the intended, misconception-revealing 

differences between two solution options, while also reducing extraneous load by eliminating the need 

to search for and identify the two relevant options amidst a random distribution of constructs. 

To measure relative learning efficiency quantitatively across conditions, researchers calculate 

instructional and performance efficiency (van Gog et al., 2008). These calculations account for learners 

who compensate for an increase in mental load by committing more mental effort, thereby maintaining 

constant performance while load varies. The data recorded often include empirical estimates of mental 

effort during instruction (EI) and transfer (ET) tasks and the performance (P) on transfer tasks. The EI 

and P calculation measures the instructional efficiency of the learning process, while the ET and P 

calculation measures the performance efficiency of the learning outcome. For example, in a study that 

included interactive puzzles in the transfer phase, results indicate PPPs with randomly distributed 

distractors decrease performance efficiency (Harms et al., 2016). In our study, we measure instructional 

efficiency with a focus on learning process economy. 

 

 

3. Software Development 
 

 
 

Figure 1. Design, Play, and Assessment Functionality integrated via PPP in Scratch. 
 

To investigate our research questions, we modified Scratch to facilitate the design, play, and assessment 

of PPPs. Aligned with the gamification strategy described in  (Tahir, Mitrovic, & Sotardi, 2020), in 

which the game elements were added to SQL-Tutor, and similar to recent iSnap integrations offering 

progress panels and adaptive messages (Zhi et al., 2019; Marwan et al., 2020), we augmented Scratch 

to influence the behavior of learners. As shown in Figure 1a, we first established a design mode which 

enables content developers to assign points to individual blocks and select blocks for inclusion in a new 

PPP palette. Equipped with this functionality, teachers can assign higher point values to blocks relevant 

to the CT concept studied and can isolate in a single palette blocks pertinent to the puzzle. 

 As presented in Figure 1b, we next established a play mode which enables students to load PPPs 

in a manner that displays the designed animated elements in the Scratch stage, but none of the blocks 

in the scripts pane authored as the solution. Technical detail is reported in (Sulaiman et al., 2019), but 

relevant to this study is an assessment system that includes a gameful scoring algorithm intended to 

encourage deliberate practice and discourage trial-and-error behavior. The longest common 
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subsequence feedback algorithm described in (Karavirta et al., 2012) inspired this approach; ours differs 

in that we leverage block points, use them and subsequence length as multipliers, and sum the multiples 

from all subsequences matching the single correct solution while also deducting for incorrectness in 

absolute position. The closer the participant is to the solution, the higher the score. 

 Lastly, we added auto-initialization and auto-execution to reflect progress visually after each 

block placement during puzzle play. These mechanisms enable the display of gameful animations while 

an avatar presents per-block correctness feedback. They also calculate completion progress so that the 

learner receives appropriate feedback when she correctly solves the puzzle or the allotted time expires. 

 

 

4. Study Purpose 

 
This extended functionality positioned us to fill gaps in existing research. One study purpose was to 

explore the adult-use of CT learning system functionality primarily designed for children. Recent 

research has: 1) found significant correlation of motivation and previous programming experience with 

self-efficacy and inclination toward a CS career in elementary students (Aivaloglou et al., 2019); 2) 

indicated drag-and-drop programming can increase three CS motivational factors in middle school 

(Bush et al., 2020); 3) suggested computing experiences prior to university can affect the world-image 

of computing habits, perceptions, and attitudes which enable or inhibit pathways into CS (Schulte et al., 

2007); and 4) illuminated benefits of community commitment and a CS/CT focused ecosystem inclusive 

of the home and community (Cao et al., 2020; DeLyser, 2018). Since demographic factors can drive 

communal values, and perceptions of how computing fulfills those values can affect sense of belonging 

and student retention (Lewis et al., 2019), we measure adult motivation and cognitive load while 

probing for attitudinal change that might influence the CT inclination for participants’ children. 

 A second purpose was to further identify PPP elements that optimize learning efficiency, since 

the behavior of programming environments can affect novices’ learning (Karvelas et al., 2020). While 

many researchers have hypothesized (Denny et al., 2008) and less often produced evidence (Ericson et 

al., 2018) that PPPs can result in more efficient learning than alternatives such as writing or fixing code, 

recently some have attempted to measure the contributions of various PPP elements (Kumar, 2017, 

2019a, 2019b; Sirkia, 2016). We measure PPP learning efficiency with and without distractors, while 

offering a comparison to programming with LCF. Derived from the literature, our hypotheses were: 

H1) PPP and PPPD training increase motivation and reduce extraneous cognitive load compared to 

training via programming with LCF; H2) PPP training yields highest learning efficiency. 

 

 

5. Formative Evaluation 

 
As an early step in a roadmap of studies intended to explore the efficacy of adding gameful systems to 

novice programming environments, and with an aim to reinforce construct validity, we engaged in a 

formative evaluation with grade 6-9 educators. Through design thinking activities, we advanced our 

learning design technique, similar to the approach described in (Kashmira & Mason, 2020). Our goals 

included: 1) identifying the CT concepts receiving focus; 2) eliciting the pedagogical needs of practicing 

teachers; 3) and refining puzzle and feedback systems.  We focus discussion here on goal 1. 

 

5.1 Participants 

 
The participants included 21 teachers from learning organizations such as Girls Who Code and 

codeHER, and 17 from U.S. schools.  11% had taught with Scratch for at least 2-4 years, 63% for 6-18 

months, and 26% had instructed with Scratch for less than 6 months.  34% of the teachers used Scratch 

for at least 51% of their curriculum, 29% used it for 26-50%, and 29% used Scratch for at least 11-15%. 

 

5.2 CT Concept Engagement 

 
(Ihantola et al., 2016) highlights the concerning status quo in which most studies in the field focus on a 

single institution and a single course, without validation by subsequent replicating research, leading to 
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limited understanding of the reasons results occur. To contribute replication results, and to identify the 

CT concepts receiving focus, we distributed a survey that included a question from a survey previously 

distributed to K-9 teachers in five European countries (Mannila et al., 2014). This question asks teachers 

to respond with their perceptions of student engagement in nine facets of CT. Since we targeted a 

narrower set of teachers in the U.S., it is perhaps unsurprising that the results do not match the earlier 

international study, in which teachers reported their students most frequently use CT concepts related 

to data (e.g. analysis). However, we present this finding to reinforce the replication concerns raised, and 

to underscore the challenges the community faces when attempting to disseminate CT globally. 

 

 
 

Figure 2. How a Small Sample of U.S. Teachers Perceive Student Engagement in CT Concepts. 
 

 Our findings in Figure 2 indicate teachers perceive their students engage in data CT concepts 

less than others such as abstraction and algorithms. Aside from the differences in population samples, 

and the associated threat to internal validity due to implicit differences in curricula (Barendsen et al., 

2015) notes a low ratio of data knowledge in K-9 U.S. CSTA materials, 2%, compared with the English 

national curriculum, 14%, English Computing at School, 16%, and Italian guidelines, 25%), an extra 

explanation for this contrast could be related to the respondent recruitment process, as we specifically 

targeted Scratch teachers, whereas the earlier one did not. Since the small sample introduces a threat to 

external validity, future studies could try to replicate these results while controlling for technology and 

teacher pedagogical content knowledge utilizing a Content Representation approach like the one 

described in (Grgurina et al., 2014). Regardless, the lack of student engagement with data warrants 

investigation, as it is an alarming result for an increasingly data-driven society. 

 

 

6. Summative Evaluation 

 

6.1 Study Design 

 
The formative evaluation helped us prioritize development, craft learning materials, and organize an 

initial summative evaluation via a 10-step between-subjects study through Amazon Mechanical Turk 

(Amazon, 2021). Participants used written instructions to guide their solving of four puzzles, and 

responded to a validated CS cognitive load component survey (CS CLCS) (Morrison et al., 2014), to a 

programming attitude Likert scale survey derived from categorized text-based responses by adults 

learners in (Charters et al., 2014), and to an intrinsic motivation Task Evaluation Questionnaire (TEQ) 

(SDT).  Protocol materials are publicly available to facilitate replication at https://bit.ly/3uhSUd7. 

 We randomly assigned participants to one of three independent variable conditions: 1) PPP; 2) 

PPPD; 3) LCF. The dependent variables included time and performance on the pre/posttests, time and 

block moves in puzzles, and the cognitive load, programming attitude, and TEQ results. 

 

6.2 Materials 

 
We tested and refined our materials in collaboration with a high school teacher, 16 of her freshman 

physics students with little prior exposure to CT, and eight undergraduates with diverse majors. Tests 
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included trials of the surveys and puzzles, and think-alouds in which the participant would interact with 

puzzles while verbalizing her thoughts.  Results led to refinements such as puzzle theme modification, 

normalization of pre/posttest difficulty, and simplification of language used in survey questions. 

 

6.3 Participants 
 

Given Wing's mobilizing declaration that CT is a "fundamental skill for everyone, not just for computer 

scientists" (Wing, 2006), and with the interventionist spirit of design-based research (Barab, 2014), we 

sought a learner population that might not otherwise encounter an opportunity to engage with CT but 

might influence its trajectory in the lives of children. We recruited 75 adults with varying degrees (24% 

high school, 60% undergraduate, 16% graduate) and a variety of self-reported programming experience 

(low: 38; medium: 26; high: 11).  46 men and 29 women comprise the sample population sourced from 

eight countries including the U.S. (60%), India (20%), and Brazil (11%). 

 

 

7. Analysis & Results 

 

7.1 Data Collection & Processing 

 
We created seven surveys in Qualtrics to capture data not directly collected by our CT learning system. 

To help measure performance and efficiency, we added instrumentation to: 1) record time from puzzle 

start until submission; 2) trace each block moved; and 3) calculate score. Since the data did not exhibit 

Shapiro-Wilk normality (p<0.05), we used non-parametric statistics, including Kruskal-Wallis and 

Pairwise Comparison of Condition tests between-subjects, and Wilcoxon tests within-subjects, to 

address skewness and kurtosis. We used guidelines for characterizing effect sizes in (Fritz et al., 2012). 

 

7.2 Cognitive Load 

 
We did not find significant differences in overall cognitive load during training between conditions. 

Upon analyzing subtypes, we found no notable differences in intrinsic and germane load, but moderate 

differences in extraneous load (PPP: M=3.12, SD= 3.26; PPPD: M=3.55, SD=3.62; LCF: M=3.90, 

SD=3.62). This result supports H1, as PPP participants self-reported lower extraneous load than PPPD 

participants, while LCF participants reported the highest. Since the LCF condition presented far more 

block choices and block search options than the PPPD condition, which in turn presented more choices 

than the PPP condition, this result indicates reducing impediments to block identification frees capacity 

for intrinsic and germane load. The higher extraneous cognitive load for training via PPPDs than with 

PPPs aligns with the findings in (Harms, et. al, 2016).  Since pedagogically, distractors can challenge 

the learner to address misconceptions, we recommend further study to track cognitive load as agency 

increases, as misconceptions not addressed during structured learning could amplify in open-ended 

environments, resulting in higher cognitive load if measured in sum across a longitudinal span. 

 

7.3 Performance 

 
Though we did not find significant training performance differences across conditions, participants in 

the PPP and PPPD conditions interacted with the blocks significantly more with a relatively strong 

effect (H(2)=21.14, p<0.001, ε2=0.29; PPP vs. LCF: p=0.001; PPPD vs. LCF: p<0.001).  The fewer 

block moves made by participants in the LCF condition indicates some may have perceived the task as 

sufficiently overwhelming to decrease exploratory programming behavior probability. 

 In addition to analyzing aggregate puzzle performance, we compared individual puzzles. 

Participants in the PPP and PPPD conditions correctly solved puzzle 3 with a significantly higher score 

(H(2)=18.44, p<0.001) and executed more moves (H(2)=14.772, p=0.001) than those who trained with 

LCF. Since the solution to puzzle 3 involved 14 blocks, the second-highest count, this result suggests 

PPPs and PPPDs, which help learners focus on smaller block selection sets, might increase training 

performance and motivation as the difficulty of the puzzle increases. 
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 Although participants in each condition solved more posttest than pretest questions correctly 

(PPP:M=0.65, SD=2.03; PPPD: M=0.82, SD=1.76, LCF: M=0.32, SD=2.25), with those in the PPPD 

condition yielding the highest increase, there is no significant difference on posttest performance across 

conditions (H(2)=1.335, p=0.513).  This lack of transfer performance disparity between PPP and PPPD 

conditions ostensibly replicates findings in (Harms et al., 2016), and is similar to findings on PPP inter-

problem and intra-problem adaptation in (Ericson et al., 2018). 

 

7.4 Efficiency 
 

 
 

Figure 3. Instructional Efficiency (E) for each of the Three Conditions. 
 

To measure efficiency, we analyzed training and transfer task time across conditions.  During training, 

participants in the LCF condition, despite making fewer block moves, required significantly more time 

than those in the PPP and PPPD conditions with a moderate effect (H(2)=6.203, p=0.045, ε2=0.08; PPP 

vs. LCF: p=0.030; PPPD vs. LCF: p=0.021). Since transfer task performance did not vary significantly 

across conditions, this result suggests training via PPPs and PPPDs enables more efficient CT learning.  

We did not, however, find a significant difference in the transfer task time (H(2)=0.883, p=0.643). 

 To emphasize the opportunity for efficient CT learning, we calculated instructional efficiency, 

using pre/posttest improvement to measure transfer performance and both time and cognitive load as 

measurements of mental effort during training (Pass & Merrienboer, 1993). Figure 3 presents areas of 

high and low effectiveness separated by the effort line E=0. The chart depicts higher instructional 

efficiency for training with PPPs and PPPDs than with LCF. However, this result refutes H2, as the 

PPPD condition yielded the highest instructional efficiency. This result contrasts with findings in 

(Harms et al., 2016), which found evidence of decreased learning efficiency from PPPDs, but it aligns 

with hypotheses regarding distractor learning benefits in (Parsons et al., 2006; Karavirta et al., 2012). 

 

7.5 Motivation 

 
To analyze motivation quantitatively, we scored the TEQ and calculated the within-subject change in 

programming attitude that occurred between the start and end of the study. Although there was no 

significant difference in TEQ results across conditions, for the perceived competence subscale, 

participants who trained with PPPs (M=4.89, SD=1.18) and PPPDs (M=4.91, SD=1.36) scored 

marginally higher than those who trained with LCF (M=4.53, SD=1.77). 

 We also found significant positive attitude changes from the start to end of the study. PPP 

participants’ attitude shifted most by: perceiving programming as more fun with a small effect size 

(H(2)=2.392, p=0.017, r=0.07), more enjoyable with a medium effect (H(2)=2.392, p=0.017, r=0.44), 

easier to start with a large effect (H(2)=3.038, p=0.002, r=0.55), less difficult to understand with a large 
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effect (H(2)=-3.343, p=0.01, r=-0.6), and less of a foreign concept with a large effect (H(2)=-3.074, 

p=0.002, r=-0.55). PPPD participants’ attitudes also shifted positively by: perceiving programming as 

easier to start with a large effect (H(2)=2.514, p=0.012, r=0.54). LCF participants shifted least by: 

perceive programming as more enjoyable with a medium effect (H(2)=2.514, p=0.012, r=0.46). When 

including only those with little prior programming experience, PPP participants reported programming 

more as something they want to learn with a medium effect (H(2)=1.997, p=0.046, r=0.48) and less 

boring with a medium effect (H(2)=-1.961, p=0.050, r=0.48) in addition to the attitude shifts described 

above. Although these results indicate attitude improvement and support H1, the lack of longitudinal 

data poses a threat to internal validity, as we cannot claim change at study conclusion persists. 

 

Table 1. Within-subject Attitude Change.  Positive shifts (p), negative shifts (n). *p<0.05, **p<0.01 

Programming is... PPP PPP-distractor limited-constraint-

feedback 

  something I've wanted to learn 

(p) 

M=0.19, SD=1.40 M=0.27, 

SD=1.31 

M=0, SD=1.19 

  fun (p) 

M=0.74, SD=1.67* M=0.40, 

SD=1.74 

M=0.36, SD=1.43 

Enjoyable (p) M=0.90, SD=1.83* M=-0.05, 

SD=1.68 

M=0.68, SD=1.76* 

  important to know (p) 

M=0.25, SD=1.48 M=-0.05, 

SD=1.17 

M=0.09, SD=1.19 

  easy to start (p) 

M=1.35, SD=2.29* M=0.68, 

SD=1.13* 

M=0.45, SD=1.71 

  something that takes practice 

(p) 

M=0.065, SD=1.09 M=0.05, 

SD=1.29 

M=-0.32, SD=1.17 

too difficult to understand (n) M-1.48=, 

SD=2.03** 

M=-0.77, 

SD=1.77 

M=-0.64, SD=1.89 

  boring (n) 

M=-0.41, SD=1.6 M=-0.32, 

SD=1.17 

M=-0.54, SD=1.90 

  a foreign concept (n) 

M=-1.13, 

SD=1.83* 

M=-0.27, 

SD=1.55 

M=0, SD=2.07 

  too time consuming (n) 

M=-0.35, SD=2.09 M=-0.09, 

SD=1.27 

M=-0.09, SD=2.44 

 
To supplement the quantitative results, we sought qualitative feedback by requesting that 

participants describe their attitude or view toward programming after the learning experience. For both 

those who self-reported low and high prior programming experience, we recorded more hesitant 

responses from those who trained via limited constraint and feedback than those who trained via PPPs 

and PPPDs. One LCF participant who selected “have tried programming activities, but have not taken 

a class” in the demographic survey, reflected on sustained struggle: “I still feel like programming is 

insanely complex. When I was in college I dropped out of computer science as soon as we started 

python. I just couldn't understand what we were doing, and maybe I could understand it if I really tried. 

It just seems to be better geared towards certain people.” One PPP participant who recorded the same 

prior programming experience noted: “[T]his activity was somewhat easy but programming is really 

much harder than this. [B]ut this is a good way for a kid to start learning.” One PPPD participant who 

selected “never attempted to program before” revealed potential for future pursuit of CT: “I would love 
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to learn more about programming and encourage my son to start learning programming early.” These 

results support H1 and those in (Charters, Lee, Ko, & Loksa, 2014), which found significant attitude 

improvement regardless of gender and education level after a brief online programming experience. 

 

 

8. Conclusion & Future Work 

 
Our survey of grade 6-9 teachers exposed teacher perceptions of limited student engagement with data 

concepts central to CT. These results led us extend the trend of balancing Scratch’s agency with 

structure to better serve learners and reduce burden on teachers. A small pilot study of an adult 

population using a learning system that integrates PPPs with Scratch yielded results indicating the 

structure provided by PPPs catalyzes motivation for CT, reduces extraneous cognitive load, and 

increases learning efficiency without sacrificing performance on transfer tasks. 

While these results reveal opportunities to advance the teaching and learning of CT via 

augmentations to block-based programming environments, we remain cautious due to external validity 

limitations: the single CT concept, sequences, and small summative evaluation population (75 adults), 

threaten generalizability. In future work, we intend to study additional CT concepts, functionality 

variation, and participants, to identify factors supportive of reliably efficient and effective CT learning. 
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