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Abstract: In this paper, we describe a system that effortlessly creates program visualization 

(PV) by incorporating time-series information into a graphical user interface (GUI) system for 

PV creation. Although several PV systems have been developed, only a few have been 

introduced or used continuously in actual classes. One of the main obstacles to using PV 

systems in actual classrooms is the significant amount of time needed to integrate PV systems 

into actual educational setups. We developed a PV system called TEDViT and introduced it into 

several practical classes. While programming learning with TEDViT had a noticeable effect, the 

time required for PV customization was a non-trivial problem. To address this issue, GUI-based 

WYSIWYG PV editor would be a promising approach. However, many existing systems only 

support PV drawing. We believe that PVs should be more than mere drawings of data structures. 

They should be sequences of drawings with a program-execution process. This study has 

therefore developed a PV-creation support system that considers the continuity of drawings by 

incorporating time-series information into the GUI. An evaluation experiment was conducted to 

measure the time required to create PVs using our system. The results suggest that our GUI 

system noticeably improves the efficiency of PV creation. 

 
Keywords: Programming education, program visualization system, program visualization 
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1. Introduction 

 
Program visualization (PV) is a widely accepted approach for supporting novice learners who find it 

difficult to obtain a clear image of program behavior. Thus far, several PV systems have been 

developed, and many positive learning effects have been reported (Pears et al., 2007). However, few PV 

systems have been introduced continuously in actual classes. One of the main obstacles to continuous 

use is the time cost involved; teachers who introduce PV systems into their classrooms must design, 

integrate, and maintain the PV generated by the system alongside their own lesson plans. 

To address this issue, we have developed a PV system, the Teacher’s Explaining Design 

Visualization Tool (TEDViT) and conducted several classroom practice sessions using this system 

(Kogure et al., 2014). One distinctive feature of TEDViT is the fact that it enables teachers to customize 

PVs, based on their own instruction plans. Through this feature, teachers can design, integrate, and 

maintain PVs that reflect their own intentions, achieving positive evaluation results that suggest 

significant learning effects. Compared to existing PV systems, however, this feature incurs additional 

costs for PV customization. More work is needed to reduce the cost of using PVs. 

While many factors may account for the high cost of PV creation, this paper focuses on PV 

customization—the most direct way to increase the learning effectiveness of PV systems. Tezuka et al. 

(2016) proposed a way to reduce the cost of PV creation. They developed a GUI-based system that 

specified the positions and attributes of drawn objects in TEDViT, making PV creations more 
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intuitive—and not based on the numerical specification of coordinates, as previously required. In 

evaluation experiments, their system reduced the time needed for PV creation by approximately 40%. It 

is thus a promising cost-reduction approach. However, their system only supports PV drawing. We 

believe that PV needs to include a sequence of drawings that follow the program execution process, 

rather than drawing alone. 

The present study has developed a system that supports PV creation by incorporating sequences 

of drawings into the GUI, based on time-series information. To evaluate the effectiveness of this 

system, we conducted an experiment in which the subjects were asked to create PVs. This paper 

describes our GUI-based system for effortless PV creation and evaluation experiment. The evaluation 

results suggest that our approach to PV creation, based on sequences of drawings, is an effective way to 

support PV creation. 

 

 

2. Related Works 

 

2.1 Existing PV Systems 

 
During the past few decades, several PV systems have been developed for novice learners, including 

Python Tutor (Guo, 2013), Jype (Helminen & Malmi, 2010), and PROVIT (Yan, Nakano, Hara, Suga, 

& HE, 2014). These systems differ in certain ways. For example, Python Tutor runs on a web browser 

and does not require local installation. Jype provides a learning environment that integrates the PV and 

automatic-assessment systems for exercise assignments. PROVIT uses 3D graphics in its 

visualizations. However, all of these systems are similar in the sense that they all visualize the target 

program and its data structures in a uniform way. Generally speaking, these systems are capable of 

visualizing programs using a fixed visualization policy. They also allow learners to observe changes in 

data structure during the execution of each statement. This function is provided by a graphical user 

interface (GUI), such as next/previous buttons for stepwise execution of the target program. Sorva, 

Karavirta, and Malmi (2013) provide a comprehensive overview of more than 40 PV systems, which 

share many similarities. 

PV systems demonstrate the runtime behavior of computer programs to novice learners by 

providing PV that visually encodes data and shows how it is processed in a running program. Novice 

learners often find it difficult to trace program states and behaviors via data structures. By bridging the 

gap between their reasoning and computational processes, PV systems can improve novice learners’ 

understanding of programs (Tudoreanu, 2003). However, as Sirkiä and Sorva (2015) have pointed out, 

PV systems are not always effective. Learners may struggle to understand the meaning of visual 

elements or neglect important aspects and focus on peripheral elements. We would argue that this 

reflects a failure to integrate with other materials or offer customizable systems. It also suggests a poor 

fit with teachers’ personal pedagogical styles. Sorva, Karavirta, and Malmi (2013) call this the 

“problem of dissemination.” Teachers’ in-class explanations shape the reasoning of learners. Similarly, 

the designs of PV-system developers shape the way that computational processes are visualized. For PV 

systems to adequately bridge the gap, they must be designed, integrated, and maintained by teachers. 

A few systems, such as ANIMAL (Rößling & Freisleben, 2002), can customize PVs. Prior 

knowledge and preparation are needed to customize PVs. ANIMAL uses the script language, 

AnimalScript, to define PV—and the cost of learning it is significant. Moreover, PV creation requires a 

non-trivial quantity of script code. The sample script for a bubble sort algorithm bundled in ANIMAL 

consists of 170 lines of script code. More efforts are therefore needed to reduce the cost of PV creation. 

 

2.2 Effortless PV Creation 

 
Several studies have investigated ways to reduce the cost of algorithm visualization (AV) and PV 

creation. Malone, Atkinson, Kosa, and Hadlock (2009) developed a pseudo-code system in which a 

definition of the visualization can be included in the pseudo code used to represent the target algorithm. 

The pseudo-code interpreter automatically derives AV from algorithm implementations. This study 

argues that it is essential to increase AV effectiveness and effortlessness. Velázquez-Iturbide, 

Pareja-Flores, and Urquiza-Fuentes (2008) developed a system that allows teachers to select PVs from 
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an automatically generated PV sequence in a list format. Although they argue that their system 

improves effortlessness in PV creation, they do not present any experimental results to prove the point 

objectively. Rößling and Ackermann (2007) have developed a framework that allows teachers to create 

AV content on-the-fly by adjusting variable values and attributes. Their framework derives from a set of 

prepared templates that define the visualization details for various algorithms. These definitions can be 

saved freely, reducing the effort needed to reuse AVs. PV systems, such as Jeliot 3 (Moreno, Myller, 

Sutinen, & Ben-Ari, 2004) are often considered effortless because they automatically generate PVs by 

providing target programs only, although the PVs generated in this way cannot be customized. There 

are various approaches to effortless PV creation and simple comparisons are difficult to make. 

 Ihantola, Karavirta, Korhonen, and Nikander (2005) have defined a taxonomy to characterize 

effortlessness in AV systems. Based on a survey conducted among CS educators, they identify three 

main categories—scope, integrability, and interaction—and evaluate several existing systems. The 

scope refers to the range of contexts in which the AV system can be applied—the various algorithmic 

domains for which the system can be adapted. Integrability refers to third-party effortlessness: how 

easy it is to integrate the AV system into educational setups. Interaction is the extent to which the 

system can be used for different cases. This factor is based not only on interactions between AV content 

and learners but also on interactions between teachers and content and the extent to which the content is 

customizable. Although PV systems tend to provide visualizations at a lower level of abstraction than 

AV systems (Sorva et al., 2013), these three factors also apply to PV creation. PV systems aim to help 

users understand underlying algorithms by visualizing program behavior. 

The present study focuses on the interactions between teachers and content, among other 

aspects of effortlessness in PV creation, based mainly on using TEDViT in the classroom. TEDViT is a 

PV system, which allows teachers to customize PV through their own instructions. The practice classes 

obtained positive learning effects from the interactions between teachers and content (i.e., PV 

customizations); we can observe students learning to understand programs (Yamashita et al., 2017), 

extend their class learning style (Yamashita et al., 2016), and so on. The goal of this work is to improve 

the effortlessness of PV creation by developing a system that supports teachers’ PV customizations. 

 

2.3 TEDViT 

 
The TEDViT system interprets each visualization policy by scanning the configuration file and 

visualizing the PV accordingly. Figure 1 presents a screenshot of the learning environment visualized 

by TEDViT. The configuration file comprises a set of drawing rules, each of which is a 

comma-separated value (CSV) entry, consisting of a condition and an object. The condition defines the 

prerequisites needed to fire the drawing rule. Teachers can use a conditional equation (consisting of a 

statement ID, variables in the target program, constant values, and comparison operators) to determine 

the drawing timing. Here, the statement ID is a unique identifier automatically assigned to all 

statements in the target program by TEDViT. The object defines the operation (“create,” “delete,” or 

“update”) used to edit the target object and the attributes need to draw it, which include object type, 

position, color, and corresponding variables. These features make PV customizable in TEDViT by 

allowing teachers to define the drawing rules. TEDViT supports visualizations of only C programs. 
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Figure 1. Screenshot of a Learning Environment generated by TEDViT. 
 

For example, the drawing rule shown in Figure 2 means that when the statement with ID “10” in 

the target program is executed, TEDViT draws a circle object and assigns it the object ID “OBJ1.” The 

corresponding variable is “i”; hence, the value of i is drawn inside OBJ1. OBJ1 is placed in position (x1, 

y1) with black, white, and black as the line, background, and inner-character colors, respectively, in 

accordance with the values indicated in the rule. TEDViT provides buttons for stepwise control of the 

target-program execution, similar to the GUI in typical PV systems. When a learner clicks on the 

“previous” and “next” buttons, TEDViT finds the corresponding program-execution status, fires the 

rule for which the condition is satisfied, and visualizes the corresponding drawn objects. 

 

 

Figure 2. Example of a TEDViT drawing rule. 
 

In classroom practice with TEDViT, the use of PVs that reflected the teacher's instructional 

intent led to certain positive learning effects. However, the customizability of PV in TEDViT also 

creates a burden for teachers, who must define the drawing rules. According to Yamashita et al. (2016), 

it took approximately 30 minutes to define the drawing rules for a single sample selection-sort code, 

consisting of approximately 30 statements. Although actual teachers rated this as an acceptable 

class-preparation cost, we consider it a significant burden. 

 

2.4 GUI System for PV Creation 

 
To support the interaction between teachers and content, some systems have functions that design PVs 

via GUI. Based on WYSIWYG AV editor implementation, Karavirta, Korhonen, Nikander, and 

Tenhunen (2002) evaluated the effortlessness of existing AV systems. Using TEDViT, Tezuka et al. 

(2016) developed a GUI system that visually defined the positions and attributes of drawn objects in 

order to reduce the cost of defining drawing rules. Hereafter, this paper will refer to their system as 

Tezuka GUI; Figure 3 presents a screenshot of this system. 
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Figure 3. Screenshot of Tezuka GUI. 
 

Tezuka GUI has functions that visually specify the positions of drawn objects, list their 

available attributes (line color, background color, character color, etc.), specify the values in 

combo-box style, and highlight grammatical errors in the drawing rules. Tezuka et al. (2016) evaluated 

the extent to which Tezuka GUI improved effortlessness (measured using the time needed to create 

drawing rules for TEDViT) and found that the measured times for rule creation were approximately 

40% less with Tezuka GUI than without.  

However, Tezuka GUI and existing WYSIWYG PV editors only support PV drawing. In 

general, PV systems change the drawing content along with the program-execution process. This allows 

learners to understand the function of each statement in the target program by observing the differences 

between PVs. Hence, we regard PVs as visualizations of the target domain world. The meaning of each 

statement in the program is defined by the extent to which executing the statement changes the target 

domain world. Importantly, PVs are not simply drawings of data structures but sequences of drawings 

linked to program-execution processes. 

PV dynamics are a direct representation of computer-program dynamics, which reveal the 

trajectory of changes in a computer’s internal state, such as data structures changed continuously. By 

showing these changes directly, dynamic visualizations can offload a learner’s cognitive working 

memory, potentially enabling deeper cognitive processes. Dynamic visualizations can also facilitate 

cognitive processes that would otherwise require a lot of effort (Kühl, Scheiter, Gerjets, & Edelmann, 

2011; Schnotz & Rasch, 2005). In other words, the learning effect of PV systems can be attributed to 

their dynamism. However, PV editors only support the creation of static visualizations. This study 

argues that PV creation cannot be fully supported through PV drawings alone. Instead, a function that 

helps capture a time-series sequence of PVs is required. 

Based on this consideration, we aim to support PV creation more effectively by developing a 

GUI system that includes PV time-series information. 

 

 

3. GUI System for PV Creation with Time Series Information 

 
Figure 4 presents a screenshot of our developed GUI system, implemented in JavaScript. The 

integrability described in Section 2.1 includes an easy-installation feature. 
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Figure 4. Screenshot of our GUI System. 
 

 

 

Figure 5. Nine Display Areas in our GUI System. 
 

 Our GUI system consists of nine display areas, as shown in Figure 5. The contents of each 

display area are as follows. 

1. The program-code area displays the source code of the target C program to be visualized. 

2. The control-button area enables PV creators to have stepwise control of target-program 

execution. 

3. The message area displays operation messages to guide PV creators, for example, by notifying 

them of insufficient drawing-rule definitions. 

4. The drawing-object area is used by PV creators to select a drawn object to be visualized on the 

PV. 

5. The attribute area displays a list of attributes of the selected drawn object, allowing PV creators 

to set the attribute values using pull-down menus, combo boxes, and input forms. 

6. The editing log area displays the editing history of the drawn object and its attribute values. 
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7. The PV area visualizes the PV by interpreting current drawing-rule definitions. 

8. The seek bar and PV thumbnail area displays the current PV and those before and after it in 

thumbnail style. The PV creator can change the current PV by dragging the seek bar. 

9. The save button area enables PV creators to store the PV sequence to a configuration file as a set of 

drawing rules. 

 The seek bar and PV thumbnails in Area 8 mainly represent the time-series information 

described in the previous section. PV creators can arbitrarily change the current PV within the 

time-series PV sequence by dragging the seek bar. PV thumbnails can make creators aware of the 

continuity of PVs. They also visually confirm the differences between adjacent PVs in the time series. 

The seek bar not only helps PV creators navigate the execution process but also helps them grasp the 

approximate position of the current PV in the time series. We intend to improve PV-generation 

efficiency using this feature. 

 

 

4. Evaluation 

 
To evaluate the effectiveness of PV creation using our GUI system, we conducted an experiment to 

measure the actual time needed to create or modify PVs. A survey by Naps et al. (2002) found that more 

than 90 percent of participants at the ITiCSE 2002 conference of the ACM cited the time required for 

PV creation as a factor in their reluctance to use animation (i.e., PV sequences). Thus, the evaluation of 

effortlessness, based on the time required for PV creation, is considered to be valid. The present study 

has measured the time required for PV creation using Tezuka GUI and evaluated the degree of 

improvement in our system’s effortlessness. 

Ten participants were involved in this experiment: two teachers with experience of teaching 

programming, five students with experience as programming teaching assistants, and three students 

with the same level of programming experience as the teaching assistants. We prepared two sample 

programs as the PV creation targets: a linear-search program and a maximum-value derivation program. 

Each participant received one sample program and was asked either to create a PV or to modify the PV 

provided. To reduce the order effects, we specified whether the participants would use Tezuka GUI or 

our system first. Table 1 briefly summarizes the conditions for each participant. 

 

Table 1. Conditions for Each Participant 

Participant # Target Operation First use Second use 

1 Linear search Creation Tezuka GUI Our system 

2 Linear search Modification Tezuka GUI Our system 

3 Maximum value Creation Tezuka GUI Our system 

4 Maximum value Modification Tezuka GUI Our system 

5 Linear search Creation Our system Tezuka GUI 

6 Linear search Modification Our system Tezuka GUI 

7 Maximum value Creation Our system Tezuka GUI 

8 Maximum value Modification Our system Tezuka GUI 

9 Linear search Creation Tezuka GUI Our system 

10 Maximum value Creation Our system Tezuka GUI 

 

We began this experiment by explaining to the participants (for 45 minutes) the specification of 

TEDViT drawing rules and how to use the two systems. Next, we gave them a sample program and a 

sample PV, without disclosing the drawing rules, and asked them to define drawing rules to reproduce 

the sample PV. Participants assigned to modification received a set of drawing rules for the sample PV, 

which included some errors. We measured the time each participant took to define the appropriate 

drawing rules. Subsequently, we conducted a questionnaire survey on the effectiveness of the seek bar 

and PV thumbnail function, using a five-point grading system. We also conducted brief interviews to 

ascertain participants’ opinion regarding the two systems. 

Table 2 presents the experimental results. Regardless of the order in which they used the GUI 

systems, target programs, and task operations, all participants took less time to complete the task with 
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our system than with Tezuka GUI. The reduction rate, based on the average time spent by all 

participants, was 41.3%. This suggests that the PV creation with our GUI system significantly improves 

effortlessness. However, this experiment compared two full systems, without specifically evaluating 

the effectiveness of time-series information (the main focus of this study). To obtain more precise 

results, we must develop two systems, one with a seek bar and PV thumbnail functions and the other 

without, and measure the time required for PV creation in both systems. We plan to conduct such 

experiments in the future. 

 

Table 2. Measured Times for PV Creation/Modification 

Participant # Time with Tezuka GUI (sec) Time with our system (sec) 

1 1136 925 

2 421 249 

3 1935 989 

4 1360 320 

5 914 834 

6 523 416 

7 1355 845 

8 520 377 

9 2022 1015 

10 1383 819 

 

The questionnaire survey on the effectiveness of the seek bar and PV thumbnail function 

produced an average score of 4.2, suggesting that the participants gave the function a positive rating. In 

the interview survey, some participants commented that providing PV continuity alongside the time 

series made it easier to spot errors. Dividing the task times into two groups, based on participant 

operations, reduced the average times needed for PV creation and modification by 37.9% and 51.8%, 

respectively. This suggests that our GUI system supports the task of correcting errors more effectively 
than Tezuka GUI. This finding will be useful in future evaluations of ways to improve effortlessness in 

PV creation. 

 

 

5. Conclusion 

 
The system described in this paper attempts to improve effortlessness in PV creation by incorporating 

time-series information into a GUI PV-creation system. 

 One of the main obstacles to the continuous introduction of PV systems in actual classrooms is 

the significant amount of time needed to integrate PV systems into actual educational setups. Our 

previous study has developed a PV system called TEDViT and introduced it into several practical 

classes. While programming learning with TEDViT has a certain effect, the time required for PV 

customization is a non-trivial problem. Using a GUI-based WYSIWYG PV editor is a promising way to 

address this issue. However, many existing systems support only the drawing of PVs, even though PVs 

are not simply drawings of data structures but sequences of drawings alongside a program-execution 

process. This study has therefore developed a PV-creation support system that takes into consideration 

the continuity of drawings by incorporating time-series information into the GUI. We conducted an 

evaluation experiment to measure the time needed to create PVs using Tezuka GUI and our system. The 

results showed that our GUI system reduced the average time by 41.3%, when compared to Tezuka 

GUI. This suggests that our GUI system improves the efficiency of PV creation. 

The experiment in this study evaluated the effortlessness of the entire GUI system. In future 

research, we will conduct experiments that focus specifically on the effectiveness of time-series 

information. We plan to measure the difference between PV-creation times using systems with and 

without the seek bar and thumbnail function to reflect time-series information. As the participants in the 

present experiment subjectively felt that the seek bar and thumbnail function had a positive effect on PV 

creation, we expect to obtain positive results. The results also reveal that our system is more effective 
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than Tezuka GUI in correcting PVs that contain errors. This will be a useful finding as we consider 

future effortlessness improvements. 
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