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Abstract: In this paper, we describe the application of iFlow, a no-code programming platform, 
in visualizing foundational computational thinking (CT) as a precursor to learning disciplinary 
concepts. Research shows that it is possible to learn both science concepts and computational 
skills through building computer simulations and solutions of problems related to natural 
phenomena. CT could be operationally defined as the cognitive processes involved in problem 
formulation, in which its solutions could be effectively carried out by an information-processing 
agent (Wing, 2010). We introduce two modules as examples to facilitate the visualization of 
computational processes that are frequently adopted in teaching physical sciences. The first 
module was designed for students to analyze and evaluate data, and the second module allowed 
students to generate simulated data and scaffold questions to predict testable outcomes. In this 
workshop, we will demonstrate how to use iFlow to teach data analysis and problem evaluation 
that takes advantage of the no-code programming by means of the functional blocks, which 
contain operational codes to vividly visualize the input, process, and output. 
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1. Introduction 
 
Computational thinking (CT) could be operationally defined as the cognitive processes involved in 
problem formulation, in which its solutions could be effectively carried out by an "information-
processing agent" (Wing, 2010). A major avenue to build CT is to integrate it into STEM disciplines, 
especially in mathematics and the physical sciences. In a 2013 report, The American Association for 
Physics Teachers (AAPT) has recommended that computational skills be incorporated into the 
undergraduate physics curriculum (AAPT, 2016), and it must include three of the following: 
spreadsheets, integrated mathematical computing packages, general-purpose programming language, 
and special-purpose software. In the 2015 Undergraduate Professional Education in Chemistry 
guidelines, the American Chemical Society (ACS) recommends that students should have access to 
computing facilities and chemistry software (ACS, 2015). Regarded as “the third pillar of science” 
alongside theory and experimentation (Skuse, 2019; Wing & Stanzione, 2016), computation is so 
fundamental in science that some even argue that “computational thinking emerged from within the 
scientific fields—it was not imported from computer science” (Denning, 2017, p. 14). CT is now a 
foundational skill for STEM workers and must be included in the undergraduate STEM curriculum, 
since Computer Science departments alone cannot meet the United States’ need for data 
science/computer professionals (US Department of Commerce) and probably for any other nation. 

Research shows that it is possible to learn both science concepts and computational skills 
through building computer simulations and solutions of natural phenomena (e.g., Aksit & Wiebe, 2020; 
Dwyer et al., 2013; Hutchins et al., 2020; Sengupta et al., 2013). If so, we need to define and build these 
skills with relevant applications to create meaningful and effective pathways within STEM courses to 
also teach CT in addition to the standalone disciplinary knowledge. We introduced a graph-based 
programming platform—iFlow—to help users develop CT skills as well as programming skills. 
Inspired by the Unified Modeling Language and dataflow programming paradigm, this constructionist 
environment (Papert, 1991), named iFlow, models a program as an executable directed graph depicting 
the structure of a computational solution and the interactions among its constituents. The results emerge 
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as data flow through these interconnected elements. While there exist successful dataflow programming 
products such as Grasshopper, LabVIEW, and Simulink, most of them are tailor-made for specific 
applications that may not be appropriate for introductory courses. For example, Grasshopper only works 
within the Rhinoceros 3D computer-aided design software, LabVIEW is mostly used in data acquisition 
and instrument control, and Simulink focuses on modeling multi-domain dynamic systems. By 
comparison, iFlow is a general-purpose, Web-based, and integrated computational environment 
designed for students to analyze and solve common problems encountered in the math and science 
curriculum, with an objective to meet diverse educational needs of students with various backgrounds 
and interests in science.  

Since computational problems can easily escalate into a complex mental model consisting of 
many abstract, intertwined moving parts that are often difficult for students to imagine and think 
through, the iFlow platform helps externalize learners’ complicated mental processes of CT. Ideally, 
the thought processes may be subsequently profiled into systematic CT strategies. In other words, 
making students’ computational thinking visible while they are shaping it can be cognitively offloading 
(Ainsworth, 2006; Ainsworth, et al., 2011; Schmidgall, et al., 2019). Visualizing computational 
processes could also be done through conventional flowcharts but they cannot be tested without actually 
programming an implementation. However, iFlow diagrams are palpably “live,” where they can run 
immediately after each action students take while constructing and tinkering with artifacts. The learning 
environment can then automatically generate formative feedback to the student and to the researcher. 
Similar to students’ concept map drawings that encode their understanding of specific concepts and 
their relationships (e.g., McClure, Sonak, & Suen, 1999), students’ iFlow diagrams reflect their CT in 
solving specific science or engineering problems using a variety of building blocks that correspond to 
different computational concepts. Therefore, these graphic artifacts of students can also be collected 
and analyzed by researchers to test a hypothesis and by teachers to assess student learning (Jonassen & 
Cho, 2008), even for tacit knowledge that would be difficult to measure otherwise (e.g., Ahmad, 
Ahmad, & Rejab, 2011). Compared with text-based code, the same strengths of iFlow that assist student 
learning can also reduce assessment burdens. In summary, we anticipate iFlow to be an invaluable tool 
in identifying students’ strategies and barriers to CT. 

As an example, we found that students struggle with fitting data to a curve and developing a 
mathematical model, one of the first tasks in data analysis in an introductory physics course. We are 
interested in tackling the following questions: What exactly is(are) the barrier(s)? Is it the coding? Is it 
the mathematics? Is it the numerical process? Is it the algorithm? Is it all of these to varying degrees? 
The problem with text-based languages, such as Python, is that the computational processes take place 
in the background and students are left without any visualizations of data flow. We envision that iFlow 
can be used, by carefully constructing specific tasks, to identify some of these problems, and to inform 
intervention mechanisms. 
 
 
2. Module Demonstration 
 
2.1 Curve Fitting 
 
The objective of curve fitting is to find a mathematical representation or function for a data set. One 
method to determine the goodness of the fit, suitable for educational purposes, is for students to visually 
examine how close the function aligns with the data. This method, which we call the “eyeball test”, 
elicits students’ problem analysis and evaluation skills that are fundamentally built on their visual 
examination, as they manipulate the parameters of the fitting function.  

To facilitate curve fitting, we first provided several data points for them to paste into the array 
input block and outputted the data on the Space2D graph. Figure 1 shows the artifact of one student 
who engaged in the problem analysis and evaluation using the curve-fitting task. The data has been 
entered into an Array Input block (top left) and the output port on the right of this block is connected to 
a Space2D block (top right) throught port A on the left side of the block. This connection allows the 
data to be plotted in a straightforward manner. The remaining blocks in Figure 1 deals with the curve 
fitting. Parameters of the quadratic fit has been connected to sliders (bottom blocks). The values of the 
parameters are input to the defined function (block directly above the block with parameter a). Points 
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for this function can be generated via the Worker block, which is inputted to Space2D for graphing via 
port B.  

In order to accomplish this activity, we first introduced some of the available blocks (shown in 
the panel in the left side of Figure 1 under the title Blocks) and contextualized the task for students to 
analyze the problem and evaluate how a proper function line or curve that best describe the relationship 
among these data points look like. Students should determine what constitutes a “good fitting function” 
by visualizing the trend to describe these non-linear data points. They may start with a simple equation, 
such as y = mx + b for a straight line (the value of x and y maps to the data points, where m is the slope, 
and b is the intercept) and they may find that the straight line does not represent the plotted data. Thus, 
they need to resort to the quadratic equation ax2 + bx + c = y and manipulate the parameters (a, b, c) 
using slider blocks in iFlow. Since each slider is connected to a parameter via actionable nodes and 
arcs, students can simply drag the slider to get synchronous change in the curve. 
 

 
Figure 1. The graph-based module shows the visual code for curve fitting. Students were provided 
with four coordinate points in the array input block (top left) and were tasked to find a curve that 

describes these data points. 
 

It is better if students first plot the data and put some thought into the type of function that 
would best fit the data. The platform will not choose the function; students must choose the function 
themselves and use the eyeball test to determine the best-fit parameters. Since we want to emphasize 
no-code programming, we need to give them the programming platform for them to compute without 
writing a single line of code. What we offer is to give them something to “program,” using blocks and 
the algorithm that explicitly shows them how the actionable nodes and arcs are connected. 

The advantage of adopting iFlow in curve-fitting is so that each change of the parameters can 
be easily computed and visualized quickly. In addition, students can observe how the data “flow” into 
a series of operational blocks and outputted on the graph, which makes the data transformation process 
explicit. 

In traditional science class, this is often accomplished on Excel or on graphing calculator. What 
are the advantages of iFlow? First, students can clearly see the independence of the two graphs of the 
data and the fitted function. They are separated and come together in the graphing block. This 
independence of the fitting function to represent the data does not clearly come across in other 
platforms, even in text-based programming, as the “x” values of the fitted function are usually chosen 
to be the same as the “x” values of the data points. There is often confusion between the data points and 
the fitted function. Second, the connection of each parameter to a feature of the fitted function can be 
made clear, simple, and direct. Sliders can be done in other platforms and similar connections can be 
made, but with more distractions, such as columns of numbers or strange syntax. Third, students can 
powerfully visualize how everything works together, such as the “obj” block taking “x” values from the 
worker and “y” values from the function to create points to plot. 
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2.2 Projectile Motion 
 
CT is not limited to data analysis such as curve fitting, it is also applicable in making predictions from 
a theory. Another module is the projectile module that showcases how scientists use computation to 
make predictions. It can also be applied to reverse engineer a curve fitting activity, in which we can 
generate simulation data from projectile module and feed the data into array input block in the curve 
fitting module to demonstrate how the scientists come up with a predicted relationship that can be tested 
experimentally. For instance, we can change the speed or angle of the projectile to determine the range 
or distance of the soccer ball (see Fig. 2) and fit this to a function. Since it may be difficult for 
experimenters to replicate the exact speed and angle, it is better to predict the relationship rather than 
the particular numbers. 

The problem analysis is still applicable in this module, and the students need to synthesize the 
given problem by identifying answers to questions, such as “What are the variables? What should be 
the input and output? How should the blocks be connected to obtain expected output?” Also, the 
visualization helps users understand the underlying algorithms and deepening their learning of the 
associated variables in the equation. For example, Why g is associated with the projectile movement? 
Why t is needed to depict the desirable output? Does mass matter? Students can query the program with 
questions such as Does the initial angle impact the horizontal distance, and if so, how? Does the height 
impact the horizontal distance, and if so, how? These may be scaffolded questions. 
 

 
Figure 2. The module shows the visual code for projectile motion. The x and y coordinates as 
a function of time are determined by the following equations: x = v cos(θ)t, y = vsin(θ)t - gt²/2 

where v is the initial speed, θ is the initial angle, and g is the gravitational acceleration. The 
time (T) it takes the object to hit the ground is: T = 2vsin(θ)/g 

 
Students can come away with several outcomes in using iFlow to study projectile motion. First, 

students can readily and quickly see how a change of angle or initial speed affect the motion all in one 
place. Second, students can clearly see that as time advances (from the Time block), the ball moves via 
its effect on x and y that come together to form a point along the path of the ball. Third, extraneous 
syntax does not cloud the essential features of the problem and how everything is connected and works 
together.  
 
 
3. Significance of the Workshop 
 
Based on the two modules described above, we conclude that students can apply the problem analysis 
and evaluation practices learned during the computational activities. We are not saying that students 
cannot come to a good understanding using other platforms, but visual stimulus is powerful in 
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promoting understanding. The connectivity and the necessity of certain functional blocks also 
demonstrate the essential ingredients of developing a computational model of a particular problem and 
thus, it promotes CT.  

The iFlow platform is designed to visualize users’ CT, so it is more versatile than scientific 
simulation platforms, particularly in eliciting students’ procedural knowledge in computing, problem 
analysis, and evaluation. iFlow offers a more powerful platform to empower students in taking the role 
of programmers, which in turn gives them more agency in creating the artifact that can execute the 
student developers’ commands, not only interacting with the predefined interface.  

Computational tasks, such as physics simulations, can be captured in system-provided or user-
defined blocks that are accompanied by simple graph-based user interfaces. This philosophy of iFlow 
resonates with the no-code movement in empowering people’s development of apps without coding, 
thus unleashing their creative potential and inviting more to join the software workforce — irrespective 
of their programming experience 

We plan to collect more empirical data that will focus primarily on students’ computational 
problem-solving practices (Weintrop et al., 2016), consisting of preparing problems for computational 
solutions, programming, choosing effective computational tools, assessing different 
approaches/solutions to a problem, developing modular computational solutions, creating 
computational abstractions, for curriculum design. 

We will investigate students’ barriers to acquiring adequate problem analysis competencies that 
especially involve computational thinking in the future studies. It is important to understand these 
barriers for students taking a natural science course, in order to target our intervention strategies for the 
development of CT in these courses. The targeted intervention will include iFlow activities which 
should empower students to better transition to text-based programming, such as Python. 
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