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Abstract: This study first presents an approach to the study of computational thinking (CT) as 
an embodied phenomenon that relies on the creation and analysis of multimodal transcripts. The 
approach, which incorporates a social semiotic approach to multimodality, is then used to train 
an artificial intelligence (AI) to recognize patterns in the participant’s behaviors that reflect their 
embodiment of CT during an educational robotics activity. The AI was developed to ease the 
labor-intensive aspects of creating and analyzing a multimodal transcript. The findings 
suggested that the AI-enhanced pattern recognition approach identified similar clusters of 
activity as human analysis, adding a level of confidence to the analysis of children’s CT that 
would be difficult to achieve using human analysis. 
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1. Introduction

Recent perspectives of embodied cognitive science offer new methodological prospects for exploring 
children’s CT, where CT is studied as a process rather than a product of learning. Although some 
scholars have begun studying CT from an embodied perspective (Black et al., 2012; Chung & Hsiao, 
2019; Melcer, 2017), attempts to conceptualize CT from an embodied perspective have not translated 
into researchers’ methodological preferences. The research designs associated with CT have often been 
reductive, ignoring the chaotic, self-organizing aspects of the process. This study aims to explore how 
different methodological possibilities can support the analysis of CT from an embodied perspective. To 
that end, we first present an approach to multimodal transcription using a methodological framework 
that aligns with the study of CT as an embodied phenomenon. The framework incorporating a social 
semiotic approach to multimodality will then be applied to the artificial intelligence (AI) pattern 
recognition approach. This research contributes meaningfully to recent and ongoing questions about 
how embodied perspectives can be leveraged into a research methodology in CT. To answer this 
question, we ask: 

1. How can we create an AI-enhanced pattern recognition approach to study children’s CT
through their embodied interactions?
One area in which AI has the potential to improve research and analysis is involving

multimodal data (Andrade et al., 2016; Sharma et al., 2019). When combined with machine learning 
(ML), the analysis of multimodal data can bring additional insight into different aspects of students’ 
learning (Blikstein, 2013). In addition, multimodal learning analytics has been useful to predict learning 
performance (Giannakos et al., 2019; Junokas et al. 2018), model and assess student behavior 
(Blikstein, 2011), and enhance the performance of intelligent tutoring systems (Yang et al., 2021).  

One reason for AI’s success in education design research is when its design strongly embodies 
the tenets of learning sciences (Järvelä et al., 2020; Luckin & Cukurova, 2019). This highlights the 
significance of grounding AI-design in a strong methodological framework. In this study, we offer a 
supervised deep neural network framework, which takes as input a set of images and maps them to 
labels generated via domain experts. The goal is to classify embodied interactions in video data in 
which multiple modes of communication take place simultaneously (e.g., talking while gesturing; 
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moving one’s body while using objects in the environment). Our paper contributes to the existing 
literature in the following ways: (1) employs an ML algorithm, which takes on human analysis to 
understand the participants’ meaning-making that is strongly connected to extended cognition (e.g., 
coupling taking place among the gestures, discourse), (2) details the steps to create a training dataset for 
a supervised approach, (3) provides a method of studying social aspects of behavior in large-scale data, 
and (4) helps multimodal learning analytics realize its potential in the field of learning sciences. 

2. Methodological Framework

For the current study, we drew on our previous research (Kopcha et al., 2019; Kopcha et al., 2020) to 
train an AI to identify children’s embodied interactions: hand gestures that represented numbers, bodily 
movements that imitated the robot, use of the computer to program the robot, use of hand-made notes, 
and use of the robot itself. The data we used to train the algorithm was largely derived from the 
multimodal transcription in which children’s CT was broken down to reveal the modes of interactions 
(see Kopcha et al., 2020; which also appear in Kopcha et al., 2019).  

In the multimodal transcription, we focused on the five major characteristics of children’s CT: 
abstraction, decomposition, algorithmic thinking, pattern recognition, and debugging. These specific 
CT skills were present during the participant’s embodied interactions. For example, Table 1 displays 
how the children’s  decomposition was manifested through the participants’ dialogue and gestures. 

Table 1. A Moment That Describes the Modes of Interactions Associated With the Children’s 
Decomposition 
Dialogue Gesture Transduction 
G: Okay! Now we need a turn. 
B: Yeah! Now a turn to do that. 
G: Hold on! [leans forward] 
B: So, that means, right forward (#a), 
left backward [eyes are fixed 
upwards] (#b). 
G: Right forward... [both lean 
towards the computer] 

a. 

b. 

The pair returns from testing to 
continue decomposing the larger 
task. Both focus on turning left. The 
boy moves his hands to show a turn 
where the right wheel moves 
forward, and the left wheel moves 
backward. 
(# a-b) 

As shown in Table 1, the participants’ CT was laid out through their observable behaviors 
including discourse and gesturing. Looking at the clusters of moments, we planned to identify those 
sequences of interaction patterns that could be linked to a specific CT characteristic such as debugging. 
As a result, to expand on our human analysis, we created an AI-enhanced Pattern Recognition 
Approach that can evaluate large and complex data sets to help identify the patterns of embodied 
interaction that are specific to CT. Table 2, below, details the process we used to support AI analysis 
from a social semiotic perspective of multimodality. 

Table 2. Steps to Creating an AI-enhanced Pattern Recognition Approach 
Steps Description with numbered sub-tasks 
Preprocessing Prior to conducting AI-enhanced analysis, the 

researcher must (1) select a theoretical framework that 
can guide the research process. This theoretical 
framework provides the foundation for both (2) the 
video segment(s) that are selected for analysis and (3) 
the multimodal transcription process. Each of these 
components must be aligned such that the theory helps 
justify the analysis. 

Processing The researcher can now (4) extract images. While 
extracting images is not technically challenging, the 
researcher must select the number of images per second 
that makes the most sense for the questions driving the 
research and the rate of interaction present in the video. 

274



 

The researcher then (5) categorizes a subset of images 
based on the theoretical framework. The images 
selected must show clearly the interaction of interest 
and the visual indicators of that interaction in order to 
accurately (6) train the AI. After the initial training, the 
research must determine if and how to improve the 
training. A common approach to (7) improving the 
training is to reduce ambiguity in the categorized subset 
of images while also increasing the number of images 
to include in the AI training. This may entail returning 
to the extracted images and selecting new images. 

Analysis Once the AI is trained with a high level of accuracy 
(80% or higher), the researcher can (8) analyze the 
entire video segment and validate output. For short 
videos, a human can validate the AI results by viewing 
each image and confirming the AI output. For larger 
videos, this task may require a larger team to validate 
the output or validation may take place by confirming a 
randomly selected subset of images. 

Report Once the AI output has been validated, the researcher 
can (9) identify methods of post-processing and/or 
visualizing results. A simple way is to use the AI time 
stamping feature to show sequences of interaction over 
time. Visualizing the results, in addition to obtaining 
frequency counts for each interaction, will help the 
researcher (10) draw conclusions and make sense of the 
results with respect to related prior studies. 

 
1. Selecting a Theoretical Framework: We selected a social semiotic approach to multimodality 

for the analysis of complex, embodied interactions (Bezemer, 2014). Social semiotics is 
strongly aligned with studying cognition and learning as an embodied meaning-making 
activity.  

2. Selecting a Video Segment to Begin the Analysis: The primary data source was a 100-minute 
video collected from a rural school in the Southeastern US. Two 5th grade participants were 
recorded as they worked together to program a robot across a 3’x3’ grid of obstacles (Choi et 
al., 2015). We selected a 5-minute segment from a 100-minute video recording because it had 
high levels of participant interactions and gestures as they used the computer, robot, and written 
materials to engage in CT. 

3. Design and Create a Multimodal Transcript of the Selected Video Fragment: The design of the 
transcript must convey how various interactions and dialogue play out over time as they are 
related to the phenomenon of interest. To create a multimodal transcript, we adopted 
Bezemer’s five steps to transcribing multimodal interaction (2014), which also appear in 
Kopcha et al. (2020). The transcripts contained an image-by-image breakdown of the video 
segment used in this study. Those transcripts were used to guide our decisions about what 
images to extract and use to train the AI (see steps 4 and 5, below), as well as to compare and 
contrast human-based analysis with the AI output (see step 12). 

4. Extract Images: We used an image extraction program to extract roughly one frame for every 
seven images, which resulted in 1353 images over 5 minutes. Researchers need to select the 
recording ratio in terms of the activity rate in the chosen video fragment. We suggest an 
increase in the extracted frames per second if there is a higher level of activity. In addition, we 
resized the extracted images to 128 x 128 resolution and normalized the intensity in all the red, 
blue, and green channels between 0 and 1 to train our network. 

5. Categorize Subset of Images Based on Theoretical Framework to Train the AI: According to 
the theory of social semiotics, there were four dominant interaction types: (1) hand gestures 
when communicating with each other, (2) use of the computer, (3) interaction with the robot, 
and (4) use of the student guide. For each of the interaction types, we then selected images that 
were distinct and uniquely showcased the interaction of interest. We ultimately ended up with 
20-25 images per interaction type. We used this classification table to train the AI. 
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6. Train the AI: We designed a minimalist Convolution Neural Network (Lecun & Bengio, 1995), 
consisting of two convolution layers with 32 feature maps and a filter size of 3 x 3. Each 
convolution layer used the ReLu activation function and was followed by batch normalization. 
Next, we flattened the last convolution layer and connected it to the dense block of size five 
representing five possible classes. The dense layer used the sigmoid activation function. Further 
reading on the layers can be obtained at Yann Lecun’s Keras guide. Finally, we used the Adam 
Optimizer (Kingma & Ba, 2014) with a learning rate of 0.00005. 

7. Revise Training as Needed: The AI ultimately yielded 80% accuracy of a match with our 
manual classification. The 20% inaccuracy was the result of some images lacking distinct, 
unique features altogether or a single image resulting in multiple possible categorization 
outcomes (e.g., she looks at the computer while he also moves like a robot's wheels).  
 In the first trial, the AI was unable to label the interactions correctly due to the 
disproportionate number of categories used for manual coding compared to the number of 
samples. That is, there were not enough samples of pictures under each category and for AI to 
make generalizations. As a result, we increased the number of images listed under each 
category.  In addition, certain frames had more than one interaction per frame. 

8. Analyze Entire Video Segment & Validate Output: We then analyzed the entire 5-minute 
segment using the AI. The AI was configured so that the output was a movie consisting of each 
image (~4 images per second) with a display of the interaction type detected in each image. We 
then independently viewed the movie in a second-by-second fashion to determine if the AI had 
appropriately identified the interaction type or if it misidentified the interaction type. Figure 1, 
below, contains two images from the movie. The first displays an appropriate identification in 
which the girl is looking off-screen at the computer (Com) and the boy is making a gesture 
(Gest). The second displays a misidentification. The misidentification was largely due to 
ambiguity in the image. It was difficult to tell whether the boy was looking downward at the 
workbook (WB) or if it was at the computer (Com) off-screen to the left of the image. 
 When compared to human identification of interactions, the AI was able to accurately 
identify the children’s interaction with the computer 84% of the time. Inaccuracies with 
identifying interaction with the computer were primarily due to ambiguity in the images where 
it was unclear if the child was looking at the computer or somewhere else off-screen (see Figure 
1 below). The AI accurately identified the children’s interactions with each other, through 
gestures, and interaction with the workbook 65% and 61% of the time, respectively. 
Inaccuracies with gestures were largely due to the computer detecting small hand movements 
that never became meaningful gestures. With regard to the workbook, the inaccuracies were 
due to the AI missing instances of the participants looking downward at the workbook or 
mislabeling those instances as computer use. The most inaccuracies were associated with 
interaction with the robot. The AI did not detect any instances, whereas the human analysis 
identified 11 images that contained the robot. 
 

  
Figure 1. Example Images from the AI Output Displaying Appropriate Identification (a) And 

Misidentification (b) of Interaction Types 
 

9. Identify Method of Post-processing & Visualizing Results: The frequencies can be displayed 
visually so that it is clear how the interactions played out over time. Our AI provided us with 
two outputs that supported the creation of a visual display. The first involved a frequency 
display with a time-stamp (see Figure 2). 
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Figure 2. Visual Display of The Computer Output 

 
 The computer output displayed what mode of interaction emerged at what time: 0.0 
represented the absence of interaction, whereas a result of 1.0 pointed to the existence of 
interaction. By looking at this output, we could tell the frequency of a specific type of social 
interaction (e.g., most frequent; least frequent) as part of a progressive timeline. For example, it 
was clear that the participants made extensive use of their workbooks as they worked on 
programming the computer in the 5-minute video segment. This output was particularly useful 
when determining what mode of interaction became more prevalent in a specific data fragment. 
         In the context of our AI analysis, our theoretical framework suggested that the use of 
gestures by our participants was an important interaction to focus on. One way we could 
visualize the results would be to isolate key moments of gesturing and display them on a 
timeline. Figure 3, below, illustrates visually one moment of gesturing from our AI results. 
    
Timeline 1:08:13 1:09:06 -1:09:08 

 
     01:12:03 

Interaction Type 

#1561 #1591 #1621 
Com ✓ (1.0) ✓ (1.0) ✓ (1.0) 
Gest ✓ (1.0) ✓ (1.0) ✓ (1.0) 
WB — (0.0)	 — (0.0) ✓ (1.0) 

Figure 3. Visually One Moment of Gesturing from Our AI Results 
 

10. Draw Conclusions: We compared the visual display (see step 9) with our multimodal 
transcripts (see step 3). Our purpose was to see if the AI was detecting the moments that we had 
already identified in our multimodal transcript. The frequency input from the AI indicated that 
the students spent roughly 3.75 minutes in the 5-minute segment working with the computer 
and workbook as a mode. This was the most prevalent in a specific fragment of the data. The 
next most prominent interaction was the participants working at the computer with no other 
modes present (0.98 minutes). The next most frequent result was of the participants holding the 
robot and referencing their workbook; this occurred 18 times (0.15 minutes). 
 The only other arrangement identified by the AI was of the participants working at the 
computer while making a gesture while working with the workbook; this occurred 3 times (0.03 
minutes) (e.g., a numerical representation of the numbers with fingers) while working with the 
workbook. The AI identified no other arrangements. A visual inspection of the 5-minute video 
clip confirmed that these frequency counts largely reflected the modes of interaction present; 
the entire clip entailed the participants working to program the computer, drawing on different 
tools throughout the process (e.g., the robot, their workbook). 
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3. Conclusion 
 
To conclude, the technology-driven, AI-enhanced approach to analyzing CT went beyond the current, 
often reductive methods. The results of the AI analysis are promising and have significant implications 
for further research. Through the display of relative frequencies, the researchers could easily interpret 
shifts across the modes in the designated categories. Likewise, spoken dialogue could be added to that 
timeline to enhance further a transduction approach. In this way, AI would help establish the behavioral 
indicators of CT that may be missed or overlooked through traditional pre-post test methods, offering 
new possibilities for integrating, assessing, and studying computer science in K-12 settings. 
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