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Abstract: Knowledge tracing is the task of modelling each student's mastery of knowledge 
components by analysing a student's learning activities trajectories. Each student’s knowledge 
state is modelled based on his or her past learning performance and is an important research 
area in improving personalized education. In recent years, many researches have focused on 
deep learning models that aim to solve the knowledge tracing problem. These methods have 
shown improved performance when compared to traditional knowledge tracing methods such 
as Bayesian Knowledge Tracing. However, as the input information into the model is a simple 
representation of the distinction of each student learning logs, the performance of past models 
are limited and it is hard to measure the relationship between each interaction. To address these 
problems, we propose the use of a state-of-the-art Bidirectional Encoder Representations from 
Transformers based model to predict student knowledge state by combining side information 
such as student historical learning performance. The bidirectional representation can analyse 
student learning logs in detail and help to understand student learning behaviours. An ablation 
study is performed to understand the important components of the proposed model and the 
impact of different input information on model performance. The results of the proposed model 
evaluation show that it outperforms existing KT methods on a range of datasets. 
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1. Introduction

In recent years, with the development of artificial intelligence and technologies, intelligent tutoring 
systems (ITSs) and massive open online courses (MOOCs) are attracting more and more students to use 
them to improve their learning performance. These platforms record a massive amount of data 
sequences of student’s learning activities about knowledge components (KCs), which are composed by 
skill, concept, exercise, etc. The collection of data has attracted researchers to develop a variety 
educational tools and models to predict the student’s knowledge state and produce personalized advice 
by analysing historical data. Not only can it give teachers insight into performance of a student more 
comprehensively so as to arrange personalized learning material, but can also let students know their 
mastery of knowledge. 

Knowledge Tracing (KT) can be formalized as follows: depending on student’s past 
performance logs	𝑋 = (𝑥!, 𝑥", … , 𝑥#) predicts the next time interaction 𝑥!"#. According to question and 
answer logs, 𝑥!  can be represented as a pair of (𝑞! , 𝑎!), where 𝑞!  is the question which the student 
attempts and 𝑎! is the result of student's answer, namely, whether it is correct or incorrect. KT aims to 
predict the probability of correctness for a student’s next answer, for example: p(𝑎!"# = 1|𝑞!"#, 𝑋). 

Many models have been proposed to solve the KT problem, such as Item Response Theory 
(IRT)  (van der Linden & Hambleton, 2013), Additive Factor Model (Cen, Koedinger, & Junker, 2006), 
and Performance Factor Analysis (PFA) (Pavlik Jr., Cen, & Koedinger, 2009) which is based on a 
logistic regression model. Another main kind of model that are popular are Bayesian Knowledge 
Tracing (BKT) (Corbett & Anderson, 1994) based on a Hidden Markov Model (HMM). More recently, 
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deep learning based models haven been gaining attention, such as: Deep Knowledge Tracing (DKT) 
(Piech, et al., 2015). DKT generally outperforms than traditional models, due to the powerful 
computation ability and the capability of capturing time sequence. Recently, some transformer based 
models have been proposed, such as: Self-Attentive Knowledge Tracing (SAKT) (Pandey & Karypis, 
2019), Attentive Knowledge Tracing (AKT) (Ghosh, Heffernan, & Lan, 2020). These models apply an 
attention mechanism to deep learning models to improve the interpretability of model and increase 
performance. However, it should be noted that those models are limited in the utilization of student 
learning logs and strictly follow the time sequences.  

To the best of our knowledge, for fully understanding the student learning performance and 
updating of knowledge state, combing both past and current data into consideration is needed. This is 
mainly different to traditional single time sequence model like BKT, DKT etc. In other words, by fully 
analysing students past learning logs (𝑥#, 𝑥$, … , 𝑥!%#)  can help us better understanding the student 
knowledge state at 𝑥!%&(𝑛 < 𝑡) rather than only utilizing (𝑥#, 𝑥$, … 𝑥!%&%#)	 data for analysis. Besides, 
properly calculating the relationship between interactions are important. In this paper, we propose a 
novel approach to solve the knowledge tracing problem, called Bidirectional Encoder Representation 
of Knowledge Tracing (BEKT) that is inspired by a Bidirectional Encoder Representations from 
Transformer model (Devlin, Chang, Lee, & Toutanova, 2019) with the aim of understanding a student’s 
knowledge state and increased prediction accuracy when compared to previous models. In our model, 
we use student’s learning activities sequence combining with their historical learning performance to 
predict the student current knowledge state. We utilize two phases in training the model. The pre-
training can help to find proper relationship between student interaction logs and initializing the input 
representation. Fine-tuning is based on the pre-training for the predication of student current knowledge 
state. In the experiment, we examine the influence of different input information and show that the 
proposed method outperforms other KT models.  
 
 
2. Related Work 
 
As online learning is attracting attention, there is an ongoing open problem of how to effectively guide 
a student to achieve their learning goals and recommend appropriate learning materials. In the context 
of student modelling, knowledge tracing tries to measure the student’s mastery level of the knowledge. 
A lot of methods based on different math and psychology models have been proposed to solve this 
problem.  

One of the most popular models is BKT (Corbett & Anderson, 1994) based on hidden Markov 
models (HMM). The correctness of student answering is calculated by Bayesian formula according to 
the skills of each exercise. The BKT model updates dynamically based on student's response sequences. 
The model requires each exercise to be associated with a single skill and it is based on assumptions that 
the student won't forget and there are no relationships between knowledge components (KCs) which 
has been highlighted as a problem by previous works, but this shortcoming has been overcome by 
extension to the BKT model to a certain degree (Hawkins, Heffernan, & Baker, 2014; Käser, Klingler, 
Schwing, & Gross, 2017; González-Brenes, Huang, & Brusilovsky, 2014). 

Learning factor analysis (LFA) (Cen, Koedinger, & Junker, 2006), based on the logistic 
regression model, is used to measure common factors of a students’ ability while trying to deal with 
multi-KCs problems. According to the logistic regression model, item response theory (IRT) is the 
simplest model which can measure the distance of each student’s ability and difficulty of exercises. 
Performance factor analysis (PFA) is an adaption of previous models, it believes the correctness of 
student response should be considered by the model. This model can use the performance of each 
student on different items to predict the probability that a student has mastered the KCs required by the 
items. Parameters of these models have highly interpretability but they cannot provide insights on the 
relationship between different KCs and computational power is limited. 

Recently, through the development of deep learning, the Deep Knowledge Tracing (DKT) 
model was proposed based on a Recurrent Neural Network (RNN) to model a student's knowledge state 
and the relationship between skills through hidden vectors. Experimental results show that DKT 
outperforms traditional models like BKT, LFA and do not require complex feature engineering. The 
input information is simply the sequence of student response for each item, i.e. 𝑥 = {𝑞!, 𝑎!}, where 𝑞! 
represents the skill index of items, and 𝑎! is the correctness of the response. Due to the structure of the 
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model, the parameters of the model are hard to interpret and recent research has tried to fix these 
problems such as: DKVMN (Zhang, Shi, King, & Yeung, 2017). Also, some research has focused on 
optimizing the quality of the prediction results of DKT (Yeung & Yeung, 2018). 

To further extent the interpretability and performance, SAKT (Pandey & Karypis, 2019) first 
uses the self-attention mechanism to solve KT problem. Attention mechanism has strong and flexible 
ability to capture the relationship of input information. Later in the work of AKT (Ghosh, Heffernan, 
& Lan, 2020), this method uses the entire learner’s practice history with context-aware representations 
to fix the limitation of small windows in SAKT. Besides, they propose an adapted attention mechanism 
which let models gain more interpretability. To the best of our acknowledgement, both of them are 
using monotonic attention mechanism which may limit model to comprehensively understand student 
historical learning logs and future performance. 

In this paper, we propose a BEKT model based on the structure BERT (Devlin, Chang, Lee, & 
Toutanova, 2019). Through leveraging the deep bidirectional representation, our model can gain more 
information from student interaction sequences. Besides, through our experiment, we precisely analyse 
the influence of different input information and the importance of pre-training. In the following section, 
we will introduce the proposal and discuss the details. 
 
 
3. Method 
 
In this paper, we propose the use of BEKT to solve the knowledge tracing problem. The model 
architecture is a multi-layer bidirectional transformer encoder, with a self-attention mechanism and 
bidirectional analysis, making the model more powerful to understand the student past learning logs. 

There are two steps of BEKT framework: pre-training and fine-tuning. As our intuition: (1) For 
understanding the student certain learning behaviours, the nearest exercises which are closely to the 
student current practice are more valuable and relevant than something far away. (2) when analyse the 
student historical learning logs, both future and past information are helpful. In other words, for 
analysing the certain student past behaviours, we should utilize the entire student learning logs to gain 
an overall point of view. Therefore, during the pre-training, we utilize mask mechanism to cover certain 
student past practice questions and push the model to conclude surrounding learning information and 
utilize it to guess the masks. It helps the self-attention to notice the time distance between student 
learning logs and to refine the vectorization of each input information. During fine-tuning phase, the 
BEKT model parameters are initialized by the pre-training and fine-tuned using the label of correctness 
for each question answering by students. An overview of the proposed model is shown in Figure 1. 
 

 
Figure 1. The overlook of BEKT. 

 
We will discuss details of our model in the following parts. 

 
3.1 Input Representations  
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Our proposed model uses the past learning trajectory of students  𝑋 = (𝐼!, 𝐼", 𝐼$, … , 𝐼%)  to predict 
whether the response to 𝐼% is correct or not. Moreover, the input sequence set 𝐼 is composed by five 
embedding parts: position encoding, concepts encoding, question encoding, response encoding and 
difficulty encoding. Following previous work, we transform each part into real-valued embedding 
vectors as 𝐸 ∈ ℝ&  and each input pair of time t can be represented as (𝑞# , 𝑐# , 𝑟# , 𝑑# ,	𝑝# ). 𝑐#  and 𝑞# 
characterize information about concepts and questions. In most of real-world educational systems, the 
question sets are generally much larger than concepts and only part of them are assigned to students. 
Therefore, due to the sparsity of problems, many of existing knowledge tracing models only utilize the 
concept to represent the student exercise, in this case, 𝑞# = 𝑐#. But in our methods, with the help of pre-
training, each question can gain more flourish and meaningful information to overcome the sparsity 
problem. In our experiment, including both questions and concepts can gain more better performance. 
𝑟# characterize information about student answering result, which can be represented as two sperate 
embedding for correct and incorrect answering, respectively. 𝑑#  characterize information about 
difficultly of question, which can be defined as the ratio of correctness for certain question in training 
dataset.  It’s an important feature to help distinct the difference of question and overcome the sparsity 
issue (Zhang, Shi, King, & Yeung, 2017). In our setting, we divided it into five levels according to 
computed correctness ratio and represent it into different embeddings. 𝑝#  characterize information 
about the order of student activities, because self-attention mechanism is not inherently aware of the 
time sequence. As for Student’s Knowledge states are continually changing follow their interaction with 
the learning system, the position encoding keeps updating to follow the changing model. Therefore, we 
utilize the learnable embeddings (Vaswani, et al., 2017) to model the temporal dynamics of attentions. 

At the beginning of each sequence, we add the special token [CLS] which is always used to 
aggregate the information of whole input representation (Devlin, Chang, Lee, & Toutanova, 2019) and 
also add another special token [SEP] at the end of it to indicate a completed input. Both of them 
embedding are same with the others which can be denoted as 𝐸 ∈ ℝ& , 𝑑 is the dimension of these 
embedding. The final input sequence 𝐼 shows in Figure 2, The size of 𝐼 is equal to 𝑛, when the length 
of student interaction logs is smaller than 𝑛, we repetitively add paddings to each encoding layers at the 
end of it. 
 

 
Figure 2. Input Representation. 

 
3.2 Pre-training BEKT 
 
The pre-training is the most important part to accomplish our hypothesis. We utilized the mask 
mechanism to accomplish the bidirectional model. Traditional knowledge tracing model interprets 
student behaviors from past to current. As our intuition, we could more comprehensively understand 
student learning activities combining with the experience of past and the next attempts of current, so 
that our model can more accurately infer student current knowledge state. 
Therefore, we automatically mask 15% embedding vectors of each interaction sequence and directly let 
model to predict the masked questions combining with the whole input information and the correctness 
of attempts. Within the chosen mask embedding vectors, it has 80% to be replaced by [mask], which 
can let model use both directional information to analyze without “seeing itself”. And 10% to be 
replaced by a random embedding selected from the “embedding bank”, which can add some noise to 
the model. The left 10% remains current representations, which prevents the model only utilize the 
surrounding information and neglect itself.  
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Noticeably, we utilize the multitask learning during pre-training. We only mask the (𝑞# , 𝑐# , 𝑑#) 
at certain time t and minimize the average of cross-entropy loss when predicting the mask embeddings 
of question, concept and difficulty. Each hidden vectors of mask input information will be fed into 
output layer of SoftMax and to predict the signed label. As we obeserving of experiment datasets, 
student often continuously attempts some questions of the same concept for learning. Therefore, the 
mask mechanism can also help to build up the relationship of those question to construct a mix 
embedding representation of question, which can be an effective way to solve the sparsity problem and 
improve the model performance. 
 
3.3 Fine-tuning BEKT  
 
In the fine-tuning, the input is a single sequence showing in the right structure of Figure 1. 

Our task is to predict the correctness of student attempts, so we change the structure of output 
representation in Fine-tuning BEKT. The input is composed by the current question embedding, skill 
embedding and difficulty embedding in the [CLS] position and all the other input remains unchanged. 
To further analysis the feature of hidden vectors, we add a small residue neural network upon BERT. 
The output of the [CLS] hidden vector is fed into residue neural network to predict the correctness of 
the student current attempt  𝐼".The output is 𝑟̂! ∈ [0,1] represent the correctness of student answering. The 
parameters of model are learnt by minimizing the binary cross entropy loss between the student true 
performance 𝑟! and predict performance  𝑟̂!: 

L =1 −(
!

𝑟!𝑙𝑜𝑔𝑟̂! + (1 − 𝑟!)log	(1 − 𝑟̂!)) 
Instead of random initializing the BEKT, parameters of fine-tuning are straightforward 

inherited from the pre-training. In the pre-training, the BEKT gets the knowledge of student learning 
behaviours and updating of knowledge states. So based on the priori knowledge, the fine-tuning BEKT 
can more accurately trace the student knowledge states and converge more quickly. 
 
 
4. Experiment 
 
4.1 Datasets 
 
In order to evaluate our model, we chose 4 widely used real-world datasets showing in table 1. 
 
Table 1. Datasets Information 

Dataset  Users Skill tag Interactions Mean correctness Mean student interaction 

ASSISTment 2009 3,684 124 336,886 0.654 91 

ASSISTment 2015 19,917 100 683,801 0.706 34 

ASSISTment challenge 1,709 102 942,816 0.373 552 

Statics2011 333 1,223 189,927 0.765 570 

 
ASSISTment 20091: This dataset is collected by the ASSISTment online tutoring systems. 

According the research (Xiong, Zhao, Van Inwegen, & Beck, 2016), the duplicated problems of old 
datasets have been found. The new dataset fixes the problems and released by the ASSISTment system. 
We deleted the none skill name data during pre-processing and length of interaction smaller than 5. The 
final dataset contains 3,684 students with 336,886 question-answers interactions based on 124 skills. 

ASSISTment 20152: This dataset contains 19,917 students’ responses for 100 skills with 
683,801 interactions. Noticed that we delete the data which correct values are not 0 or 1. Even though 
it has a lot of interactions of providing by students, but the average interactions per student are pretty 
low. 

 
1 https://sites.google.com/site/ASSISTmentdata/home/assistment-	2009-2010-data/skill-builder-data-2009-2010 
2 https://sites.google.com/site/ASSISTmentdata/home/2015-	ASSISTment-skill-builder-data	 
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ASSISTment challenge3: These datasets are provided by the 2017 ASSISTment data mining 
competition. There are 1,709 students with 942,816 interactions and 102 skills. 

Statics2011 (Zhang, Shi, King, & Yeung, 2017): The data is collected from engineering statics 
courses containing 333 students, 1,223 skill tags and 189,927 interaction pairs. We combine the problem 
name and step name together as an exercise tags, therefore it has maximum number of exercise tags 
comparing to other datasets. 
 
4.2 Evaluation Methodology 
 
In the experiment, we chose to compare the proposed model with three state-of-the-art Knowledge 
tracing models on four different publicly available educational datasets. The details of these models 
are described in the related work. 

To measure the accuracy and generalizability of the proposed model when compare to the three 
state-of-the-art models, we apply 5-fold cross-validation at the student level in our experiments, which 
means that the students are split randomly into 5 distinct groups and the training and validation sets 
selected from these groups. For the measurement of model prediction performance, we calculate the 
Area Under the receiver operator characteristic Curve (AUC) as described by Fawcett (2006). 

Our model was implemented in Python using the Pytorch framework. The parameters of model 
are initialized from a Gaussian distribution with zero mean and standard deviation 𝛿. The ADAM 
optimizer is used to optimize the model parameters with the learning rate of 5'() for the pretrain, 2'() 
for the fine-tuning and a batch size of 128 for each dataset. We choose different length of sequence 
according to the average length of student interactions, so we set n=80 for ASSISTment challenge and 
Statics2011 and n=50 for ASSISTment2009 and ASSISTment 2015. For the hyper- parameters of 
BEKT, we set up with 8 Transformer blocks, 8 self-attention heads and the hidden size of 256. We set 
of two layers small residue network for fine-tuning correctness predictions with size 512 and 256 
separately and activation uses ReLU. 
 
 
5. Results and Discussion 
 
5.1 Student Performance Prediction 
 
To show the effectiveness of the proposed model, we measure the prediction performance of the models 
using AUC. Higher AUC measurements represent greater model accuracy. Results of test AUC on 
different datasets are shown in Table 2, with the best prediction performance for each dataset shown in 
bold. 
 
Table 2. Student Performance Prediction Comparison 

Dataset AUC 
DKT DKT+ DKVMN SAKT AKT-NR AKT BEKT-NS BEKT 

ASSISTment 2009 0.7547 0.7221 0.7456 0.7268 0.7494 0.7594 0.7549 0.8227 
ASSISTment 2015 0.7125 0.7049 0.6970 0.6875 - 0.7015 0.7139 0.7167 
ASSISTmentChall 0.7182 0.7163 0.6568 0.7071 0.7159 0.7536 0.7141 0.7746 
Statics2011 0.8071 0.8027 0.8002 0.7773 - 0.8189 0.8254 0.8307 

 
We compare the BEKT model with the state-of-art DKT, the optimal variations of DKT(DKT+), 

DKVMN model, SAKT model and AKT model. AKT-NR means the AKT model only utilizes only 
skill input information without considering the difference between question. In other word, in this case, 
𝑞# = 𝑐#. BEKT-NS means that BEKT only utilizes the skill information as with other models and BEKT 
is our full model as discussed in the model section. We implemented the same data pre-processing as 
BEKT on their models. Overall, BEKT outperforms previous knowledge tracing models.  

 
3 https://sites.google.com/view/ASSISTmentdatamining	 
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For the ASSISTment 2009 data, the test AUC of BEKT is 0.8227 which is better than 0.7547 
of DKT, 0.7221 of DKT+ and 0.7456 of DKVMN, 0.7268 of SAKT, 75.94% of AKT. On the 
ASSISTment 2015 dataset which student average interaction length is shortest, therefore it can’t show 
the integration power of our model sufficiently. BEKT gains small improvement over DKT, DKT+, 
DKVMN, SAKT, AKT with 0.7167 over 0.7125, 0.7049, 0.6970, 0.6875, 0.7015 respectively. With 
regard to Statics2011, which has the maximum number of student average interaction length, BEKT 
improvements of 0.118 than the best state-of-art model AKT. For ASSISTment challenge, BEKT 
achieves improvement over DKT, DKT+ and DKVMN, SAKT, AKT with 0.7182, 0.7163, 0.6568, 
0.7071, 0.7536 respectively. 

For equally comparing purpose, we also conduct the additional experiment which utilize only 
skills without any other side information as the others model implemented. It should notice that in this 
case, we should utilize the AKT-NR for comparing purpose. ASSISTment 2015 and Statics2011 dataset 
only contain the skill information, so there is no difference between AKT-NR and AKT on these two 
datasets. According to the result, by comparing BEKT-NS with other models on all datasets, our model 
still outperforms than others except in ASSTIment Challenge dataset.  

In summary, BEKT outperforms than other methods across all the datasets. This result 
demonstrates that the pre-training can help model comprehensive understanding of student knowledge 
states and the side information as difference of question and their difficulty can further improve the 
model performance. 
 
5.2 Ablation Study 
 
In order to understand the importance of different parts of the proposed BEKT model contribute to the 
performance, we conducted an ablation study (Pandey & Karypis, 2019). There are several steps and 
parts of the input representation that could contribute more to the overall performance. Table 3 shows 
the performance of different parts of BEKT on all the datasets without question difficulty information. 
We utilize the Q to represent question, C for the concept, R for the result, P for the position information. 
For example, BEKT-QCRP means the input representation in certain time t is (𝑞# , 𝑐#, 𝑟#,	𝑝#). Results 
for ASSISTment 2015 and Statics2011 were omitted because the datasets do not contain question 
information. 
 
Table 3. Student Performance Prediction Comparison 

Architecture ASSISTment 2009 ASSISTment 2015 ASSISTment challenge Statics2011 
NP P NP P NP P NP P 

BEKT-QCRP 0.7602 0.7666 - - 0.7652 0.7720 - - 
BEKT-QRP 0.7264 0.7647 -  - 0.7679 0.7710 - - 
BEKT-CRP 0.7538 0.7549 0.7107 0.7139 0.7135 0.7141 0.8121 0.8254 

 
Pretraining: In the Table 3, we compare the BEKT model with pre-training (P) and without pre-

training (NP) result in a different situation. The result shows that model with pre-training outperforms 
than directly train the model. Pretraining does help BEKT understanding student interactions and 
changing of knowledge states. Because the information provided by per student is different according 
to their learning logs, so the ASSISTment challenge and Statics2011 gain more promotion than the 
other two datasets. 

Question: By comparing the result of BEKT-QCRP and BEKT-CRP, model with question 
information can gain more prosperous information and performance. In our experiment, the 
ASSISTment2009 dataset contains 15925 number of questions and ASSISTment Challenge contains 
1183 number of questions. Therefore, ASSISTment 2009 dataset questions are much sparser than 
ASSISTment Challenge. From the result BEKT-QCRP, we can see the pre-training can effectively solve 
the sparsity problem.  

Table 4 shows the influence of question difficulty. The question difficulties indicate the student 
average performance on measuring the difference of question. Comparing with the BEKT contains the 
question difficulties (BEKT-D) and BEKT without question difficulties (BEKT-ND), it clearly shows 
that question difficulties can effectively improve model performance. Especially, in ASSISTment2009, 
it improves the AUC of the model by 0.561, which could indicate it can also help to solve the sparsity 
problems.   
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Table 4. Ablation Study of BEKT with Difficulties 

Architecture ASSISTment 2009 ASSISTment 2015 ASSISTment challenge Statics2011 
NP P NP P NP P NP P 

BEKT-D 0.8154 0.8227 0.7117 0.7167 0.7693 0.7746 0.8244 0.8307 
BEKT-ND 0.7602 0.7666 0.7107 0.7139 0.7652 0.7720 0.8121 0.8254 

 
In conclusion, with the pre-training BEKT can get more comprehensive view of student 

behaviours, updating of knowledge state and solve the sparsity problem of questions. The different side 
information can provide more detail information to help model improving the performance. 
 
5.3 Attention Weights Visualizing 
 
Figure 3 shows the visualizing of attention mechanism using ASSISTment2009 dataset of certain 
student learning logs. 
 

 
(a)                                                                (b) 
Figure 3. Visualization of attention weights  

(a) input without concept information (b) input with concept information. 
 

We use the relevance matrix to show the influence between student interactions. Each 
interaction is represented as (𝑞# , 𝑐#). There are three concepts included in the student interactions: 83 
(Divisibility Rules), 84 (Prime Number), 309 (Order of Operations +,-,/,* () positive reals). We conduct 
two different experiment to see the influence weight between student interaction sequence. Due to the 
leftist interaction is what the model will predict, it can’t be seen by other interactions. Therefore, the 
first column is masked as 0 weight. In the figure 3(a), it shows the weight relationship without   knowing 
the concrete concept of each question. We can see three box area inside graph which indicates that our 
model can capture the concept information of each question automatically. In other words, the question 
within each box may have some kind of relationship and influence to each other. It can also capture the 
latent relationship between concepts like model perceives that the question belongs to concept 83 and 
concept 84 has some correlation. Intuitively, the concept 83 and 84 do have some relationship for the 
division property. For comparison, we also show the relationship between student interaction when 
giving the concept information in figure 3(b). It can capture more accurate relationship then only giving 
question information and it can also capture the latent relationship between concept. From both figure 
3(a) and 3(b), we can see clearly diagonal which shows our first hypothesis that the nearest exercises 
which are closely to the student current practice are more valuable and relevant than something far 
away. For the MOOC platforms, it may not available to assign the concept to each question like showing 
as 3(a). But our model can help to infer the concepts to each question and keep highly accuracy. 
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6. Conclusions and Future Work 
 
In this paper, we propose a new model BEKT, which utilizes the student historical learning logs and 
initializes the model using two tasks: pre-training and fine-tuning. Each students past learning 
information can help the model not only trace the student knowledge state, but also understand the 
distinction between students. The pre-training with bi-directional deep representation helps the model 
more comprehensively understand student knowledge states and learning behaviours as shown by an 
ablation study. Experiments on different datasets show that our model outperforms than state-of-the-art 
models. However, there are still some limitations of the BEKT that should be addressed. For example, 
the pre-training phase has a high computation cost to train even though fine-tuning phase of the model 
can converge sooner. Different skill embedding dimensions of datasets may also influence the 
performance of model, and further investigation is needed to prove the current assumption. 

For future work, we will try to develop more a concise pre-training task to speed up the whole 
process. Also, we will incorporate side information and time windows to further improve the input 
representation and comprehension of the model. Besides simply add all encoding parts together, we will 
also particularly investigate the influential of each part and find an appropriate way to compose them 
together. 
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