
Rodrigo, M. M. T. et al. (Eds.) (2021). Proceedings of the 29th International Conference on Computers in
Education. Asia-Pacific Society for Computers in Education

Development of Mapping Function between
Variable Value and Object Properties for

Program Behavior Visualization Tool TEDViT
Hiroki SOMAa, Satoru KOGUREb, Yasuhiro NOGUCHIb, Koichi YAMASHITAc,

Raiya YAMAMOTOd, Tatsuhiro KONISHIb & Yukihiro ITOHe
aGraduate School of Integrated Science and Technology, Shizuoka University, Japan

bFaculty of Informatic, Shizuoka University, Japan
cFaculty of Business Administration, Tokoha University, Japan
dFaculty of Engineering, Sanyo-Onoda City University, Japan

eShizuoka University, Japan
* soma.hiroki.17@shizuoka.ac.jp

Abstract: TEDViT is a program behavior visualization system that can reflect explanatory
intentions of a teacher by visualizing it in a target world. This system can dynamically reflect
changes in variables caused by program behavior in terms of numerical values on objects.
However, it is difficult to map the variable values to the position, size, and color of the object. In
this study, we implemented a function in TEDViT to dynamically map variable values to object
properties. We report an experimental evaluation using 10 subjects.

Keywords: Programming learning support, program behavior visualization

1. Introduction

It is crucial to visualize the behavior of an algorithm to understand it. Therefore, several systems have
been developed to visualize program behavior (Moreno, Myller, & Sutinen, 2004) (Matsumura,
Daisukey, & He, 2009). However, the visualization method used in these systems is fixed by the
developer, and the teacher cannot change the visualization method.

Therefore, a behavior visualization tool for C language programs called TEDViT (Yamashita et
al., 2015) was developed to solve this problem. It allows the teacher to set the properties of objects
associated with variables by specifying the behavior visualization method by rules, and drawing objects
according to the intention of the teacher. The teacher can set the properties of the objects associated with
the variables by specifying rules to visualize the behavior. The numbers and characters displayed on the
object are automatically updated with a change in the value of the variable. This is known as mapping
function.

As mentioned above, the objects visualized by TEDViT have properties (drawing color, display
position) that can be specified by the teacher as a part of the visualization rules. However, TEDViT has
the following problems.

Problem 1: There size of the objects cannot be specified by the teacher.
Problem 2: It is difficult to change the properties of the objects according to the values of the variables.

To solve Problem 1, we created an object whose size can be specified and teachers can generate it
by rules. To solve Problem 2, we developed a mechanism that can dynamically map each variable value
to the property of each object such as size, color, and position. In this mechanism, teachers can set
visualization rules for mapping variable values to object properties. Therefore, the improved system can
allow the teacher to provide a detailed visualization and a wider range of possibilities to reproduce the
intended drawing. Moreover, using the new rules, the teacher can reduce the time required to create
rules for changing the properties. The purpose of this research is to implement these two mechanisms to
solve the abovementioned two problems.

694

2. Previous Works

The GUI of TEDViT consists of a source code section that displays the source code. It is an
implementation view that displays a memory image corresponding to the program behavior, and a
conceptual view that visualizes the behavior of the program. Additionally, TEDViT can automatically
display the value of each variable in the program at the time of execution in the object. In this case, it is
necessary to describe the visualization rules to draw, highlight, and display messages. Examples of
visualization rules are shown below.

rule,j,state==1,create,obj_i,square,i,x1,y0,blue,white,black

In this example, when the statement 1 is executed, an object obj_i is created for variable i at
coordinates (x1,y0). This object type is square, with a blue outline, a white background, and a
black string.

3. Development of Mapping Function between Variable-Values and Object Properties

3.1 Create a New Object for Problem 1

The size of the objects in TEDViT cannot be specified by the teacher. The knapsack problem is an
example of an algorithm that utilizes size for visualization. It selects the object with the greatest value
within a limited capacity. However, we require a representation method in which the size can be
changed arbitrarily to visualize capacity. Therefore, we solved Problem 1 by creating an object whose
size can be specified. Based on the existing rectangular objects, we created three types of objects that
can specify only horizontal size, only vertical size, and both, respectively.

3.2 Implementing Functions to Reference Variable Values

TEDViT cannot dynamically map variable values to the properties an of object. If the teachers want to
change the property of an object in response to a change in a variable value, they have to write
additional rules for each change. The knapsack problem and sorting discussed in Problem 1 can be
visualized by mapping specific numerical values or variable values to properties. Other visualization
tools (Halim, et al., 2012) (algorithm-visualizer, 2021) visualize the process of sorting by changing the
bar graph. This is represented by changing the "size" of the object depending on the value of the
variable. Therefore, by mapping variable values and numerical values to the properties of existing
objects and the objects created in Problem 1, it was possible to automatically follow the property values
to the variable values. This dramatically reduced the cost of writing rules and solved Problem 2. The
target properties of the mapping function in this research were "size," "color," and "coordinates."

Size: As a solution to Problem 1, we created an object that can specify the size. Therefore, the size can
be changed dynamically using this object according to the value of the variable being visualized. In
addition, we added an item to the rules to specify a numerical value for the magnification of the change
in height and width to ensure that the object can be drawn with the magnification applied.
Colors: The rules in TEDViT allow the user to specify the colors of the background and border of an
object, and the text colors of variable values. The first is to convert the variable value into a color
parameter. The second is to change the color discrete by a conditional expression, by specifying a
conditional expression and a color. Currently, up to two conditional expressions can be specified, and
variable values can be used in conditional expressions.
Coordinates: In TEDViT, the position of an object can be specified using the Cartesian coordinate
system. By specifying the reference coordinate, the name of the referenced variable, and the
magnification factor, a function is implemented to move the coordinate from the reference coordinate
by the value of the variable value multiplied by the magnification factor.

695

4. Evaluation Test

Since Problem 1 was solved, an evaluation experiment was not conducted. To verify that the time
required to write visualization rules can be reduced by solving Problem 2, we conducted an evaluation
experiment for rule writers. The subjects were two university instructors who teach programming, four
university students who have experience as TAs, and four university students who have the same
programming ability as the TAs. In the evaluation experiment, after explaining the definitions of the
rules to the subjects, we asked them to write existing and new rules to perform the same actions as the
example presented, and measured the time required for completion. The task was to visualize the
change in "color" and "coordinate" according to the value of the variable, using two questions each for
the existing and new ruleset, for a total of four questions. The results of the experiment are shown in
Table 1.

Table 1. Experimental Data

Problem classification Colors Coordinates
Used ruleset Existing New Existing New
Existing to New (mm:ss) 40:35 12:00 31:56 9:22
New to Existing (mm:ss) 29:57 25:06 22:32 15:10
Average (mm:ss) 35:16 18:33 27:14 12:16
Ratio [New/Existing](%) 52.6 45.1

Table 1 shows that the creation time required for the new ruleset was shorter than that for the

existing ruleset. Furthermore, multiple people stated in a questionnaire conducted after the experiment
that the new rules were easier to write for colors and coordinates. Therefore, it can be inferred that the
new ruleset reduced the creation cost of the visualization rules.

5. Summary

We extended the capabilities of TEDViT to allow dynamic mapping of variable values to object
properties. Hence, we were able to improve the drawing capability and reduce the cost of creating
visualization rules. Conversely, it is necessary to measure the learning effect of mapping variable values
and study a new drawing method using the mapping function. However, the description method of the
new visualization rules can be improved further.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP18K11567 and JP19K12259.

References

AlgorithmVisualizer, https://algorithm-visualizer.org/, (Last viewed on May 22, 2021).
Halim, S., Koh, C., Z., Loh, B. H. V., & Halim, F. (2012) Learning algorithms with unified and interactive

Web-based visualization. Olympiads in Informatics, 6, 53-68.
Matsumura, K., Daisukey, S., & He., A. (2009). A C language programming education support system based on

Software Visualization, Proceedings of Joint Conferences on Pervasive Computing (JCPC), 9-14.
Moreno, A., Myller, N., & Sutinen, E. (2004). Visualizing programs with Jeliot 3, Proceedings of the working

conference on Advanced visual interfaces (AVI), 373-376.
Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y., Konishi, T., & Itoh, Y. (2015). Educational practice of

algorithm using learning support system with visualization of program behavior, Proceedings of ICCE2015,
632-640.

696

