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Abstract: Millions of students worldwide are now using intelligent tutoring systems (ITSs). At 

their core, ITSs rely on student performance models (SPMs) to trace each student's changing 

ability level over time, in order to provide personalized feedback and instruction. Crucially, 

SPMs are trained using interaction sequence data of previous students to analyze data generated 

by future students. This induces a cold-start problem when a new course is introduced, because 

no students have yet taken the course and hence there is no data to train the SPM. Here, we 

consider transfer learning techniques to train accurate SPMs for new courses by leveraging log 

data from existing courses. We study two settings: (i) In the naive transfer setting, we first train 

SPMs on existing course data and then apply these SPMs to new courses without modification. 

(ii) In the inductive transfer setting, we fine tune these SPMs using a small amount of training 

data from the new course (e.g., collected during a pilot study). We evaluate the proposed 

techniques using student interaction sequence data from five different mathematics courses 

taken by over 47,000 students. The naive transfer models that use features provided by human 

domain experts (e.g., difficulty ratings for questions in the new course) but no student 

interaction training data for the new course, achieve prediction accuracy on par with standard 

BKT and PFA models that use training data from thousands of students in the new course. In 

the inductive setting our transfer approach yields more accurate predictions than conventional 

SPMs when only limited student interaction training data (<100 students) is available to both. 
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1. Introduction 

 
Intelligent tutoring systems (ITSs) are an educational technology that provides millions of students 

worldwide with access to learning materials and personalized instruction. Even though ITS offerings 

come at a much lower cost, they can in certain cases be as effective as a personal human tutor (VanLehn, 

2011). ITSs can mitigate the academic achievement gap and help disadvantaged students (Huang et al., 

2016). At their core, ITSs rely on student performance models (SPMs), to trace each student's changing 

ability level over time (Corbett & Anderson, 1994), to enable personalized curricula and feedback. 

The increasing popularity of ITSs induces a need for SPM techniques that are flexible enough 

to support frequent releases of new courses, as well as changes to existing courses. The cold-start 

problem, which arises when a new course is released for which no student log data is available for SPM 

training, prevents us from applying conventional modeling approaches. In practice this means that the 

first batch of students does not enjoy the full benefits offered by the ITS. Future students then have the 

advantage that the log data generated by the early students can be used to train an accurate SPM. 

In this paper we consider transfer learning (TL) techniques to improve the learning experience 

of early adopter students by mitigating the SPM cold-start problem for new courses. We show that TL 

can be used to train accurate SPMs for a new course by leveraging student log data collected from 

existing courses. We study two settings: (i) In the naive transfer setting where no data is available for 

the new course, we learn course-agnostic SPMs – i.e., models whose parameters can be trained using 

student interaction sequence data from existing courses and that can be applied to any new course. (ii) 

In the inductive transfer setting where small-scale new course data is available, we tune pre-trained 
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course-agnostic SPMs to the new course by learning new course-specific question and knowledge 

component (KC) (i.e., skill) difficulty parameters. This inductive transfer setting mimics the case where 

the course designer can run a pilot with a small number of students before large-scale deployment. 

We evaluate the proposed TL techniques using learning trajectory data from over 47,000 

students collected from five different mathematics courses offered by a single ITS organization. In both 

settings, we find that the proposed techniques mitigate the cold-start problem for all courses. We hope 

that TL methods will become a standard tool for ITS designers and improve the learning experience of 

early students. The key contributions of this paper include: 

⚫ Course-agnostic student performance models. We present the first course-agnostic modeling 

techniques for predicting student performance on future questions in newly introduced courses 

where no previous students have yet taken this course. Even though our course-agnostic models 

have no access to training data logs of students taking the new course, they exhibit predictive 

performance comparable to conventional BKT and PFA models – found in many real-world ITSs 

– which were trained on data from thousands of students taking the new course.  

⚫ Inductive transfer learning for efficient tuning. We use transfer learning techniques to 

efficiently tune our pre-trained course-agnostic performance models to individual new courses by 

learning question- and KC-specific parameters. Our experiments show how our approach leads to 

more accurate performance predictions than conventional modeling techniques in settings in which 

only limited student log data from the new course is available (<100 students). 

⚫ Guidance for practice. By analyzing data from five different courses offered by a large-scale ITS 

this work provides insights which can inform the design of future ITSs. Among others, our 

experiments show how manually assigned difficulty ratings and information about distinct learning 

contexts provided by human domain experts during content creation can be used to boost the 

prediction accuracy of course-agnostic SPMs. Further, going against common guidance, our study 

of various existing SPM approaches reveals that large logistic regression models can outperform 

classical lower dimensional SPMs even in data starved settings (when training on <10 students). 

 

 

2. Related Work 

 

2.1 Transfer Learning 

 
Transfer learning (TL) techniques are a class of machine learning (ML) algorithms which aim to 

improve model performance in a target domain (e.g., a new course) by leveraging data from a different 

but related source domain (e.g., existing courses) (Zhuang et al., 2020). TL is particularly attractive 

when only limited target domain data is available, but source domain data is abundant. Via pre-training 

on source domain data, TL can acquire a model for the target domain even when no target domain data 

is available. TL techniques enjoy great popularity in domains such as image classification and machine 

translation but have also been applied to various educational data mining (EDM) problems. 

In the context of learning management systems (LMS), TL methods that combine data from 

multiple different courses or from multiple offerings of the same course have been explored for 

predicting academic performance (e.g., Tsiakmaki et al., 2020). Data collected from multiple courses 

has been used to predict the student’s likelihood of completing future courses (Huynh et al., 2020) and 

their degree program (Hunt et al., 2017). In the setting of massive open online courses (MOOCs) TL 

can improve dropout predictions (e.g., Boyer & Veeramachaneni, 2015). Unlike all above-mentioned 

transfer approaches, in this work we do not predict a single attribute related to a current course (e.g., 

pass/fail, student dropout), but rather trace the changing likelihood with which students answer 

individual questions inside an ITS correctly over time based on their interaction history.  

More related to the ITS setting considered in this paper, Paquette et al. (2015) studied the transfer 

of student gaming detection models between different courses and ITSs. Using simulated students, 

Spaulding et al. (2021) investigated an approach for transferring cognitive models of language learning 

between educational games. Multi-task learning has been proposed to learn useful representations via 

pre-training on response correctness and interaction time prediction tasks (Kim et al., 2021). Baker 

(2019) framed the problem of transferring student models (e.g., gaming detection models, SPMs, …) 
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between different learning systems as an open challenge at the EDM2019 conference. Recently, Baker 

et al. (2021) surveyed related work and discussed directions for future research on sharing models across 

different learning systems. While our work does not consider the transfer of SPMs across different ITSs, 

it focuses on the question of transferring SPMs between different courses inside the same ITS. 

 

2.2 Student Performance Modeling 

 
Tutoring systems rely on SPMs to estimate a student's ability level based on sequential log data that 

describes their prior interactions with the system. There are three major categories of SPMs: (i) Markov 

process-based inference, (ii) logistic regression and (iii) deep learning-based approaches. Markov 

process-based techniques, such as Bayesian Knowledge Tracing (BKT) (Corbett & Anderson, 1994) 

and BKT+ (Khajah et al., 2016), are well established and can for example be found in the Cognitive 

Tutor (Koedinger & Corbett, 2006) and the ASSISTments system (Feng et al., 2009). Most probabilistic 

approaches estimate a student's ability level by performing inference in a two state Hidden Markov 

Model – one state to represent mastery and one for non-mastery. Logistic regression models rely on a 

set of manually specified features which summarizes the student's interaction sequence. Given an input 

vector with feature values, the regression-based SPM estimates the probability that the student is 

proficient in a certain question or KC. Some approaches in this class are PFA (Pavlik et al., 2009), 

DAS3H (Choffin et al., 2019), Best-LR (Gervet et al., 2020) and Best-LR+ (Schmucker et al., 2022). 

Deep learning-based approaches take as input the same sequence data, but unlike logistic regression 

techniques can learn suitable features on their own without requiring human feature engineering. Deep 

learning models benefit from large-scale training data, but as of today, BKT- and logistic regression-

based SPMs are still competitive with deep learning in multiple domains (e.g., Khajah et al., 2016; 

Schmucker et al., 2022). A survey on recent deep learning-based SPMs is provided by Liu et al. (2021). 

Importantly, all above-mentioned SPM approaches rely on course-specific parameters (e.g., 

parameters that represent the difficulty of individual questions and KCs in the target course) that need 

to be learned from target course data. This makes these models inapplicable in our cold start setting 

where a new course is first introduced and there is no data for training these parameters available yet.  

Lastly, we want to mention recent works (Gervet et al., 2020; Zhang et al., 2021) which 

investigated another SPM related cold-start problem. There, the question is how accurate are SPM 

predictions for new students for which we have only observed a few interactions. This is different from 

the cold-start problem studied in this paper – it addresses the question of how to handle a new cold-start 

student in an existing course, whereas we address the question of how to handle a new cold-start course.  

Related to the inductive transfer setting studied in this work, is a short-paper by Zhao et al. (2020) which 

proposed an Attentive Neural Turing Machine architecture that requires less training data than an LSTM 

based approach. Unlike our study, they only experiment with small-scale student log data (<30 students, 

<1000 responses) and do not leverage data collected from existing courses for knowledge transfer. 

 

 

3. Problem Setting 

 

3.1 The Student Performance Modeling Problem 

 
Formally, we denote the sequence of student 𝑠’s past interaction with the system as 𝒙𝒔,𝟏:𝒕 =
(𝑥𝑠,1, … , 𝑥𝑠,𝑡). The tuple 𝑥𝑠,𝑡 = (𝑦𝑠,𝑡 , 𝑞𝑠,𝑡 , 𝑐𝑠,𝑡) represents the data collected for student 𝑠 at time-step 𝑡. 

Variable 𝑞𝑠,𝑡 indicates the answered question, 𝑦𝑠,𝑡 ∈ {0,1} is binary response correctness and 𝑐𝑠,𝑡 is an 

aggregation of additional information about question difficulty, learning context, read materials, 

watched videos and time. Provided student 𝑠’s history 𝒙𝒔,𝟏:𝒕 and a question 𝑞𝑠,𝑡+1, a SPM 𝑓𝑤 estimates 

𝑝(𝑦𝑠,𝑡+1 = 1 | 𝑞𝑠,𝑡+1, 𝒙𝒔,𝟏:𝒕) as the probability of 𝑠 responding correctly to 𝑞𝑠,𝑡+1 if it were asked next.  

All SPMs considered in this paper are parametric and defined by a vector 𝑤 ∈ 𝑅𝑑. Using training 

data 𝐷 = {𝒙𝒔𝟏,𝟏:𝒕𝟏
, … , 𝒙𝒔𝒏,𝟏:𝒕𝒏

} capturing interaction logs from previous students one can determine a 

vector 𝑤𝐷 for predicting the performance of future students by solving the minimization problem 
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𝑤𝐷 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑤∈𝑅𝑑

∑ ∑ 𝐿(𝑓𝑤(𝑞𝑠,𝑡 , 𝒙𝒔,𝟏:𝒕−𝟏), 𝑦𝑠,𝑡)

𝑡𝑠

𝑡=1𝑠∈𝐷

. (1) 

Here, 𝐿(�̂�𝑠,𝑡, 𝑦𝑠,𝑡) = − (𝑦𝑠,𝑡𝑙𝑜𝑔(�̂�𝑠,𝑡) + (1 − 𝑦𝑠,𝑡)log(1 − �̂�𝑠,𝑡)) is the negative conditional log-

likelihood of observed student response correctness 𝑦𝑠,𝑡  given model prediction �̂�𝑠,𝑡 = 𝑓𝑤(𝑞𝑠,𝑡 , 𝒙𝒔,𝟏:𝒕−𝟏) 

and student history 𝒙𝒔,𝟏:𝒕−𝟏. This function penalizes predictions �̂�𝑠,𝑡 that deviate from observation 𝑦𝑠,𝑡.  

 

3.2 Dataset 

 
For our analysis we rely on the Squirrel Ai ElemMath2021 dataset (Schmucker et al., 2022) which 

provides log data from multiple mathematics courses for elementary school students collected over a 3-

month period. Overall, the dataset describes about 62,500,000 interactions from over 125,000 students. 

Going beyond pure question-solving activities, ElemMath2021 provides insights into how students 

interact with learning materials. During content creation human domain experts assign each question a 

difficulty rating between 10 and 90 and specify a prerequisite graph to describe dependencies between 

individual KCs. ElemMath2021 further records information about the learning context by assigning 

each learning activity to one of six categories of study modules (e.g., pre-test, post-test, review, …). 

Our study of the transferability of SPMs partitions ElemMath2021 into multiple course-specific 

datasets. We selected the five courses with the most students, which we refer to as C6, C7, C8, C9 and 

C40. Together, these five courses capture approximately 26,300,000 interactions from over 47,000 

students (Table 1). Each student only participates in a single course which implies disjoint student 

populations across courses. In terms of covered KCs and used questions the courses are also disjoint 

except for C9 and C40 which have an overlap of less than 5%. These properties allow us to measure 

the transferability of SPMs to different courses involving disjoint students and disjoint questions and 

KCs. 

 

Table 1. Five largest ElemMath2021 courses by student number. Avg. responses is the average 

number of submitted responses per student. Avg. correctness is the proportion of correct student 

responses.  

course C6 C7 C8 C9 C40 

# of students 11,864 9,423 10,296 8,531 7,487 

# of questions 2,483 2,226 2,438 2,407 1,307 

# of KCs 164 145 159 157 87 

# of responses 3,262k 1,934k 2,142k 1,407k 1,228k 

avg. responses  275 227 187 165 164 

avg. correctness 71.30% 69.62% 69.47% 68.68% 62.39% 

 

 

4. Approach 

 

4.1 Naive Transfer Approach 

 
The naive transfer setting is concerned with using student log data 𝐷𝑆 from existing source courses 𝑆 =
{𝑆1, … , 𝑆𝑘} to learn an SPM that can be applied to any future target course 𝑇. Crucially, such a course-

agnostic SPM approach cannot rely on any parameters that describe course-specific features. Because 

existing SPMs rely on parameters that capture properties of individual questions and KCs, they require 

access to target course data 𝐷𝑇 for training and are thus not applicable when such data is not available. 

As a first step in the design of course-agnostic SPMs we identify a set of features which induces 

model parameters that do not require target course data for training. For this we study existing logistic 

regression-based SPMs. Each regression model relies on a distinct feature function 𝛷 = (𝜙1, … , 𝜙𝑑) 

which outputs a real-valued feature vector that describes student 𝑠's prior interaction history 𝒙𝒔,𝟏:𝒕 and 

information about the next question 𝑞𝑠,𝑡+1. The trained model then uses this feature vector as input to 

estimate the probability that 𝑠 will respond correctly to question 𝑞𝑠,𝑡+1 if it were asked next as 
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 𝑝(𝑦𝑠,𝑡+1 = 1 | 𝑞𝑠,𝑡+1, 𝒙𝒔,𝟏:𝒕) = σ (𝑤⊺Φ(𝑞𝑠,𝑡+1, 𝒙𝒔,𝟏:𝒕)). (2) 

   

Here 𝑤 ∈ 𝑅𝑑 is the learned weight vector that defines the model and 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) ∈ [0,1] is 

the sigmoid function whose output can be interpreted as the probability of correct response.  

Because conventional SPMs use feature functions that target course-specific features they do 

not generalize to new courses. As an example, consider the Best-LR model by Gervet et al. (2020). It 

features an ability parameter 𝛼𝑠 for each individual student and difficulty parameters 𝛿𝑞 and 𝛽𝑘 for each 

individual question 𝑞 and KC 𝑘. Further, Best-LR uses count features for the number of prior correct 

(𝑐𝑠) and incorrect (𝑓𝑠) responses of student 𝑠 overall and for each individual KC 𝑘 (i.e., 𝑐𝑠,𝑘 and 𝑓𝑠,𝑘). 

Defining scaling function 𝜙(𝑥) = 𝑙𝑜𝑔(1 + 𝑥), the Best-LR prediction is 
 𝑝Best-LR(𝑦𝑠,𝑡+1 = 1 | 𝑞𝑠,𝑡+1, 𝒙𝒔,𝟏:𝒕) = 𝜎(𝛼𝑠 − 𝛿𝑞𝑠,𝑡+1

+ 𝜏𝑐𝜙(𝑐𝑠)  + 𝜏𝑓𝜙(𝑓𝑠) 

                                                                       + ∑ 𝛽𝑘

𝑘∈𝐾𝐶(𝑞𝑠,𝑡+1)

+ 𝛾𝑘𝜙(𝑐𝑠,𝑘) + 𝜌𝑘𝜙(𝑓𝑠,𝑘)). (3) 

One can interpret the Best-LR feature function as a tuple 𝛷 = (𝛷𝐴, 𝛷𝑇) where 𝛷𝐴 is course-

agnostic (i.e., total counts) and 𝛷𝑇 is target course-specific (i.e., student ability, question and KC 

difficulty and counts). Because – to the best of our knowledge – this is the first work that investigates 

course-agnostic SPMs we introduce simple but reasonable baselines by taking conventional SPM 

approaches and reducing them to their course-agnostic feature sets. 

 From Best-LR we derive a course-agnostic SPM called A-Best-LR. A-Best-LR uses overall 

count features 𝑐𝑠 and 𝑓𝑠 to indicate the number of student s’s prior correct and incorrect responses. The 

two parameters 𝛾 and 𝜌 consider the number of prior correct (𝑐𝑠,𝑘) and incorrect responses (𝑓𝑠,𝑘) for the 

current KC 𝑘 – the same 𝛾 and 𝜌 parameters are used for all KCs. Best-LR’s ability parameters are 

reduced to a single bias term 𝛼 that is constant over time for all students. The A-Best-LR prediction is 
 𝑝A-Best-LR(𝑦𝑠,𝑡+1 = 1 | 𝑞𝑠,𝑡+1, 𝒙𝒔,𝟏:𝒕) = 𝜎 (𝛼 + 𝜏𝑐𝜙(𝑐𝑠) + 𝜏𝑓𝜙(𝑓𝑠) + 𝛾𝜙(𝑐𝑠,𝑘) + 𝜌𝜙(𝑓𝑠,𝑘)). (4) 

 

By avoiding course-specific features A-Best-LR can be trained on source data 𝐷𝑆 from existing courses 

and then be used for any new course 𝑇. Giving a similar treatment to other common SPMs we define: 

⚫ A-BKT: We train a single BKT parameter set shared for all KCs. We then estimate student 

performance by using this parameter set to initialize a separate BKT model for each individual KC.  

⚫ A-IRT: We train an IRT (Rasch) model that uses the same difficulty parameter (𝛿) for all questions. 

We then use this single difficulty parameter to trace each student’s ability over time for each KC 

and derive performance predictions. The student ability parameters are updated after each 

response. 

⚫ A-PFA: We train a reduced 3-parameter PFA model that uses the same difficulty (𝛿), correctness 

(𝛾), and incorrectness count parameters (𝜌) for all KCs. 

⚫ A-DAS3H: We train a reduced DAS3H model that uses a shared difficulty parameter (𝛿) for all 

questions and KCs, a shared constant ability bias term (𝛼) for all students and a single a set of time-

window based correctness and incorrectness count parameters for all KCs. 

⚫ A-Best-LR+: We train a reduced Best-LR+ model that augments the A-Best-LR feature set 

(Equation 3) with response pattern and smoothed average correctness features (Schmucker et al., 

2022). In addition, the model learns a single set of DAS3H time-window (Choffin et al., 2019), R-

PFA (Galyardt & Golding, 2015) and PPE (Walsh et al., 2018) count parameters used for all KCs. 

 

Related to A-BKT, Corbett & Anderson (1994) evaluated a version of BKT which uses a single set of 

BKT parameters for all KCs that is trained and tested on data from the same course. Related to A-PFA, 

Maier et al. (2020) proposed to learn PFA parameters for KCs with enough training data and to use the 

average of the parameters to model KCs with insufficient data in the same course. A-BKT and A-PFA 

are different in that they train on data from existing courses and then make predictions for a new course. 

Conventional SPMs – including all the above – base their estimates solely on log data that describes 

the student’s question-answering behavior. Recently, it has been shown how alternative types of log 

data collected by modern ITSs can improve logistic regression-based SPMs (Schmucker et al., 2022). 

The use of such alternative types of features is particularly interesting in the naive transfer setting 
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because most conventional SPM features are course-specific and are thus not transferable. The 

ElemMath2021 dataset captures various types of student interaction data. In our experiments we 

consider information related to student video and reading material usage, learning context, question 

difficulty ratings assigned by human domain experts during content creation, KC prerequisite structure 

and the response- and lag-time features introduced by SAINT+ (Shin et al., 2021). 

 

4.2 Inductive Transfer Approach 

 
Most conventional SPM approaches rely on parameters that capture question- and KC-specific 

attributes. By training and testing on target course data 𝐷𝑇 using a 5-fold cross validation, Table 2 

compares the performance of course-agnostic SPMs with models that use the same course-agnostic 

feature set, but which are allowed to learn additional course-specific parameters to capture question- 

and KC-difficulty. We observe that the inclusion of question- and KC-specific parameters leads to large 

improvements in prediction accuracy and closes the gap to conventional SPM techniques (Table 3). 

Table 2. When training and testing on data from the same course, adding course-specific question- 

and KC-difficulty parameters to the course-agnostic A-AugLR model increases accuracy (ACC) and 

AUC. 

 ACC (%) AUC (%) 

A-AugLR 72.02 69.48 

A-AugLR+KC 74.00 74.99 

A-AugLR+quest. 76.34 79.39 

A-AugLR+KC+quest. 76.37 79.39 

 

Motivated by this observation, we propose an inductive TL approach that uses small-scale 

target course data 𝐷𝑇 to tune a pre-trained course-agnostic SPM to a new course 𝑇 by learning additional 

question- and KC-specific parameters. Formally, the pre-trained agnostic and target model are defined 

by weight vectors 𝑤𝑆 ∈ 𝑅|𝛷𝑆| and 𝑤𝑇 ∈ 𝑅|𝛷𝑆|+|𝛷𝑇| respectively. We use 𝐿2 regularization to subject the 

target weights 𝑤𝑇 to a Gaussian prior 𝒩((𝑤𝑆, 0)⊺,  1) and control the degree of regularization using a 

penalty parameter 𝜆 ∈ 𝑅≥0. The regularized maximum likelihood objective is 
 

𝑤𝑇 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑤∈𝑅𝑑

𝜆

2
||𝑤 − (

𝑤𝑆

0
) ||2

2 + ∑ ∑ 𝐿(𝑓𝑤(𝑞𝑠,𝑡 , 𝒙𝒔,𝟏:𝒕−𝟏), 𝑦𝑠,𝑡)

𝑡𝑠

𝑡=1𝑠∈𝐷𝑇

. (5) 

By using a prior for 𝑤𝑇 that is based on the previously learned 𝑤𝑆, we can mitigate overfitting 

and can learn a suitable target model using only very limited training data 𝐷𝑇. With increasing amounts 

of recorded learning histories in 𝐷𝑇 the objective focuses increasingly on model fit. For our experiments 

we determine the penalty parameter value by evaluating 𝜆 ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100} using 

the first split of a 5-fold cross validation on the C6 training data. We found 𝜆 =  5 to be most effective 

for different amounts of tuning data and use it for all our experiments. 

 

 

5. Experiments 

 

5.1 Evaluation Methodology 

 
As is common in prior work (e.g., Choffin et al., 2019; Gervet et al., 2020) we filter out students with 

less than ten answered questions. In the naive transfer setting, we use each course once to simulate a 

new target course 𝑇 ∈ {C6, C7, C8, C9, C40}. For each target course 𝑇 we train one course-agnostic 

SPM using source data 𝐷𝑆 from the other four courses and then evaluate predictions on the unseen 

target dataset 𝐷𝑇. For the inductive transfer experiments, we perform a 5-fold cross-validation on the 

student level where in each fold 80% of students are used as training set 𝐷𝑇,train and the remaining 

20% are used as test set 𝐷𝑇,test. To simulate small-scale training data, we sample a limited number of 

students (5, 10, … ) from training set 𝐷𝑇,train. Because the ElemMath2021 courses tend to introduce 

topics in the same sequential order, we only sample students that reached the last topic – sampled 
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students might have skipped or revisited individual topics. This approach mimics the case where the 

course designer can collect interaction log data from a small number of students during a pilot study 

before large-scale deployment. We report model performance using accuracy (ACC) and area under 

curve (AUC) metrics. AUC is a common evaluation metric for SPMs which can be interpreted as the 

probability that the model ranks a random correct student response higher than a random incorrect 

response. 

 

Table 3. Reference model performance. Performance metrics achieved by conventional course-

specific student performance models that were trained and tested on data from the same course. 

 C6 C7 C8 C9 C40 Averaged 

model \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

Always correct 71.30 50.00 69.62 50.00 69.47 50.00 68.68 50.00 62.38 50.00 68.29 50.00 

BKT 74.89 73.39 71.66 69.35 72.24 70.43 72.01 70.09 68.09 71.00 71.78 70.85 

PFA 74.66 73.02 71.52 69.19 72.13 70.21 71.87 69.94 67.85 70.87 71.61 70.65 

IRT 75.52 75.66 73.05 73.22 73.28 73.21 72.40 72.36 68.66 72.05 72.58 73.30 

DAS3H 77.31 78.15 74.59 76.06 75.05 76.18 74.09 75.38 70.87 75.20 74.38 76.19 

Best-LR 78.42 80.30 75.95 78.44 76.58 78.97 76.33 79.08 73.10 78.07 76.08 78.97 

Best-LR+ 78.75 80.85 76.18 78.83 76.90 79.39 76.69 79.58 73.62 78.81 76.43 79.49 

Our code builds on the public GitHub repository by Schmucker et al. (2022) which implements 

various SPMs. We build on their regression models and leave their hyperparameter choices unchanged. 

We use pyBKT (Badrinath et al., 2021) to implement the BKT experiments. For our naive and inductive 

transfer experiments we use PyTorch and train each model for 200 epochs using the Adam optimizer 

with learning-rate α = 0.001. As a reference, Table 3 shows average performance metrics of common 

SPM approaches that were trained and tested on the same course using a 5-fold cross-validation. To 

increase reproducibility, we provide detailed descriptions of the evaluated features and SPMs in an 

external appendix hosted on GitHub (https://github.com/rschmucker/TransferableSPM-Appendix). 

 

5.2 Naive Transfer Experiments 
 

Feature Evaluation. We evaluate the benefits of different features for course-agnostic SPMs. For each 

feature, we train an augmented A-Best-LR+ model using the A-Best-LR+ feature set plus one of several 

possible additional features, described below. We use A-Best-LR+ because it combines features that 

were found most useful in earlier SPMs and it yields the most accurate predictions among all considered 

course-agnostic baseline models in our experiments (Table 5).  

Table 4 shows the ACC and AUC scores when adding each of several additional features to A-

Best-LR+. The most useful additions are the one-hot features that encode question difficulty ratings 

assigned by human domain experts during content creation – these improve performance on average 

over all five courses by 0.24% ACC and 1.07% AUC. The one-hot learning context features improve 

the average AUC score by 0.14%. The count features that track the number of prior correct and incorrect 

responses to questions of a certain difficulty or learning context, lead to smaller improvements 

compared to their one-hot counterparts. The lag time and response time features improve AUC scores 

on average by 0.15% and 0.11%. The post- and pre-requisite features derived from the KC dependency 

graph did not benefit the course-agnostic SPMs. Similarly, the count features that summarize the 

students' video and reading material usage did not improve the performance predictions. One limitation 

of these two count features is that they do not capture the relationship between the content covered by 

individual learning materials and questions. 

 

Table 4. Naive transfer feature evaluation. Using the A-BestLR+ feature set augmented with one 

additional feature we trained course-agnostic models on four source courses and evaluated on a new 

target course. The marker X indicates which additional features yielded the largest improvements. 

 C6 C7 C8 C9 C40 Averaged  

model \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC  

A-BestLR+ (base)  73.86 67.33 71.62 65.41 71.92 65.79 72.36 68.92 67.59 68.31 71.47 67.15  

current lag time 73.91 67.48 71.55 65.42 72.00 66.00 72.40 69.02 67.65 68.38 71.50 67.26 X 

prior resp. time 73.94 67.61 71.57 65.39 72.02 65.98 72.39 69.12 67.46 68.41 71.48 67.30 X 

context one-hot 73.83 67.24 71.65 65.56 71.94 65.95 72.38 69.02 67.65 68.70 71.49 67.29 X 

https://github.com/rschmucker/TransferableSPM-Appendix
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context count 73.87 67.38 71.53 65.33 72.04 65.79 72.41 69.09 67.71 68.54 71.51 67.23 X 

difficulty one-hot 74.09 68.63 71.88 66.80 72.22 67.21 72.54 69.71 67.82 68.84 71.71 68.24 X 

difficulty count 73.84 67.34 71.60 65.56 71.93 66.00 72.33 69.00 67.59 68.52 71.46 67.28 X 

prereq count 73.88 67.27 71.58 65.44 71.91 65.83 72.31 68.92 67.55 68.28 71.45 67.15  

postreq count 73.61 66.48 71.68 65.03 71.98 65.96 72.38 69.22 67.39 68.15 71.41 66.97  

videos count 73.84 67.32 71.59 65.41 71.95 65.75 72.30 68.91 67.52 68.20 71.44 67.12  

readings count 73.83 67.41 71.60 65.48 71.96 65.82 72.37 68.93 67.53 68.19 71.46 67.17  

 

Agnostic AugmentedLR. Given the experimental results in Table 4, we created a final model (which 

we call A-AugLR) that incorporates all the features from A-Best-LR+ (base), plus all features marked 

by X in Table 4, namely lag and response time, learning context and question difficulty. To complete 

our experiments on the naive transfer setting, we then compared the performance of A-AugLR to the 

naive transfer baselines defined in Subsection 4.1. The results of this comparison are shown in Table 5. 

We observe that the course-agnostic SPMs derived from BKT, PFA, IRT and DAS3H struggle in the 

naive transfer setting and yield low AUC scores. The A-Best-LR+ model uses additional features to 

capture aspects of long- and short-term student performance over time. On average, its predictions yield 

0.37% higher ACC and 1.09% higher AUC scores compared to the A-Best-LR model it builds on. 

The A-AugLR model yields the best predictions in the naive transfer setting. Compared to A-

Best-LR+, the A-AugLR models are on average 0.38% more accurate and their AUC scores are 1.76% 

higher. This shows how additional information provided by domain experts during content creation can 

enable accurate performance predictions on cold start courses in the naive transfer setting. Importantly, 

even though our course-agnostic A-AugLR models were fitted using data from different source courses 

their prediction accuracy is on par with course-specific BKT and PFA models which were trained on 

target course data (compare the A-AugLR row in Table 5 to the BKT and PFA rows from Table 3). 

 

Table 5. Naive transfer performance. We used each of the five courses to simulate a new target course 

and trained course-agnostic performance models using student data from the other four source 

courses. 

 C6 C7 C8 C9 C40 Averaged 

model \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

A-BKT 73.25 63.29 70.58 60.87 71.04 60.85 70.93 62.30 65.56 63.87 70.27 62.57 

A-PFA 73.27 63.54 70.75 60.59 71.13 61.23 70.92 62.29 65.55 63.13 70.32 62.16 

A-IRT 59.50 61.82 58.36 59.55 57.50 59.45 58.04 60.96 58.33 62.72 58.35 60.90 

A-DAS3H 73.29 63.70 70.81 60.84 71.15 61.31 70.98 62.41 65.59 63.54 70.36 62.36 

A-Best-LR 73.55 66.38 71.35 64.17 71.74 65.01 71.99 67.87 67.13 66.86 71.15 66.06 

A-Best-LR+ 73.86 67.33 71.62 65.41 71.92 65.79 72.36 68.92 67.59 68.31 71.47 67.15 

A-AugLR 74.28 69.11 71.80 67.21 72.35 68.19 72.76 70.52 68.05 69.52 71.85 68.91 

 

5.3 Inductive Transfer Experiments 

 
Here, we evaluate our inductive TL approach (I-AugLR) that uses small-scale target course data DT to 

tune a course-agnostic A-AugLR model – pre-trained on log data from the other courses – to the target 

course by learning course-specific difficulty parameters. We also evaluate a course-specific model (S-

AugLR) which use the same feature set as I-AugLR but does not use a pre-trained model. We measure 

the amount of target course data for tuning in number of students and experiment with values in 

{0, 5, 10, 25, 50, 100, 250, 500, 1000}. The 0-student case is equivalent to the naive transfer setting. 

Figure 1 compares the performance of our inductive TL method (I-AugLR) with conventional 

SPM approaches and S-AugLR trained using only target course data 𝐷𝑇. Due to the page limit, we only 

plot model performance for C40. By tuning a pre-trained A-AugLR model, I-AugLR can mitigate the 

cold-start problem for all five courses and benefits from small-scale log data. Given as little as data 

from 10 students, the I-AugLR models consistently outperform standard BKT and PFA models that 

were trained on logs from thousands of target course students (Table 3). Among all considered SPMs, 

I-AugLR yields the most accurate performance prediction up to 25 students for C7, up to 100 students 

for C6 and C8 and up to 250 students for C9 and C40. Among the non-TL approaches, Best-LR is most 

data efficient and yields the best performance predictions when training on up to 500 students. 
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Figure 1. Training student performance models with different amounts of student log data. 
 

 

6. Discussion 

 
Our experiments show that our proposed TL techniques can mitigate the SPM cold-start problem for 

new courses by leveraging student interaction data from other existing courses. In the naive transfer 

setting where no target course data is available, the course-agnostic A-AugLR models trained on data 

from existing source courses yielded prediction accuracy on par with standard BKT and PFA models 

that use training data from thousands of students in the target course. One key ingredient of our course-

agnostic SPMs is additional information about question difficulty and learning context provided by 

domain experts during content creation. While these features improve SPM predictions, the need for 

manual annotations puts an additional load on the content creators. Further, the success of our transfer 

approach depends to a degree on the domain expert’s ability to assign accurate question difficulty labels. 

In the inductive transfer setting we use small-scale target course data (e.g., collected during a 

pilot study) to tune pre-trained course-agnostic SPMs. This allows us to overcome the limitations of the 

naive transfer setting by learning target course specific question- and KC- difficulty parameters. Our 

parameter regularized approach yields better predictions than conventional SPM approaches when only 

limited target course data (<100 students) is available. Surprisingly, we found that among the non-TL 

approaches, Best-LR (Gervet et al., 2020) yielded the most accurate predictions when training on less 

than 500 students for all five courses. This is interesting because low-parameter models such as BKT 

(Corbett & Anderson, 1994), PFA (Pavlik et al., 2009) and IRT (Rasch, 1960) are commonly believed 

to be more data efficient than more complex logistic regression models that contain many more 

parameters. What sets Best-LR apart from these three models, is that its parameters describe student 

performance using multiple levels of abstraction (question-, KC- and overall-level). Future work might 

investigate this phenomenon further using log data from multiple different ITSs. 

One limitation of our study is that it focuses on a set of five courses offered by the same ITS. 

This has advantages because the course log data is of consistent format and content creators follow 

similar protocols. Still, it prevents us from answering the question of whether SPMs are transferable 

between different tutoring systems (Baker, 2019). Another related limitation is that all considered 

courses cover mathematics topics for elementary school students. Our study did not investigate the 

transferability of SPMs across different subjects or grade levels (e.g., middle school, high school, …).  

 

 

7. Conclusion 

 
The increasing popularity of intelligent tutoring systems (ITSs) induces a need for student performance 

modeling (SPM) techniques that are flexible enough to support frequent new course releases as well as 

changes to existing courses. This paper proposes two transfer learning approaches for mitigating the 

cold-start problem that arises when a new course is introduced for which no training data is available. 

In the naive transfer setting where no new course data is available, we rely on student interaction 

sequences from existing courses to learn course-agnostic SPMs that can be applied to any future course. 

In the inductive transfer setting where small-scale new course data is available (e.g., collected during a 

pilot study), we show how one can tune pre-trained course-agnostic models to a specific course by 

learning question- and KC- (i.e., skill) difficulty parameters. Our experimental evaluation on student 
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log data from five different mathematics courses showed how both transfer approaches mitigate the 

cold-start problem successfully. This work represents a first step in the design of SPMs that are 

transferable between different ITS courses. The success of our approach depends significantly on (i) 

automatically learned course-independent parameters that characterize how quickly students learn a 

skill as a function of the number of prior practice attempts, and (ii) information provided by human 

domain experts in the form of difficulty values for questions in the new, target course. We hope that 

transfer learning techniques such as the ones discussed in this paper will enable ITS designers to provide 

effective adaptive instruction for early adopter students. 
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