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Abstract: Millions of students worldwide are now using intelligent tutoring systems (ITSs). At
their core, ITSs rely on student performance models (SPMs) to trace each student's changing
ability level over time, in order to provide personalized feedback and instruction. Crucially,
SPMs are trained using interaction sequence data of previous students to analyze data generated
by future students. This induces a cold-start problem when a new course is introduced, because
no students have yet taken the course and hence there is no data to train the SPM. Here, we
consider transfer learning techniques to train accurate SPMs for new courses by leveraging log
data from existing courses. We study two settings: (i) In the naive transfer setting, we first train
SPMs on existing course data and then apply these SPMs to new courses without modification.
(ii) In the inductive transfer setting, we fine tune these SPMs using a small amount of training
data from the new course (e.g., collected during a pilot study). We evaluate the proposed
techniques using student interaction sequence data from five different mathematics courses
taken by over 47,000 students. The naive transfer models that use features provided by human
domain experts (e.g., difficulty ratings for questions in the new course) but no student
interaction training data for the new course, achieve prediction accuracy on par with standard
BKT and PFA models that use training data from thousands of students in the new course. In
the inductive setting our transfer approach yields more accurate predictions than conventional
SPMs when only limited student interaction training data (<100 students) is available to both.

Keywords: performance modeling, knowledge tracing, transfer learning

1. Introduction

Intelligent tutoring systems (ITSs) are an educational technology that provides millions of students
worldwide with access to learning materials and personalized instruction. Even though ITS offerings
come at a much lower cost, they can in certain cases be as effective as a personal human tutor (VanLehn,
2011). ITSs can mitigate the academic achievement gap and help disadvantaged students (Huang et al.,
2016). At their core, ITSs rely on student performance models (SPMs), to trace each student's changing
ability level over time (Corbett & Anderson, 1994), to enable personalized curricula and feedback.

The increasing popularity of ITSs induces a need for SPM techniques that are flexible enough
to support frequent releases of new courses, as well as changes to existing courses. The cold-start
problem, which arises when a new course is released for which no student log data is available for SPM
training, prevents us from applying conventional modeling approaches. In practice this means that the
first batch of students does not enjoy the full benefits offered by the ITS. Future students then have the
advantage that the log data generated by the early students can be used to train an accurate SPM.

In this paper we consider transfer learning (TL) techniques to improve the learning experience
of early adopter students by mitigating the SPM cold-start problem for new courses. We show that TL
can be used to train accurate SPMs for a new course by leveraging student log data collected from
existing courses. We study two settings: (i) In the naive transfer setting where no data is available for
the new course, we learn course-agnostic SPMs — i.e., models whose parameters can be trained using
student interaction sequence data from existing courses and that can be applied to any new course. (ii)
In the inductive transfer setting where small-scale new course data is available, we tune pre-trained
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course-agnostic SPMs to the new course by learning new course-specific question and knowledge

component (KC) (i.e., skill) difficulty parameters. This inductive transfer setting mimics the case where

the course designer can run a pilot with a small number of students before large-scale deployment.

We evaluate the proposed TL techniques using learning trajectory data from over 47,000
students collected from five different mathematics courses offered by a single ITS organization. In both
settings, we find that the proposed techniques mitigate the cold-start problem for all courses. We hope
that TL methods will become a standard tool for ITS designers and improve the learning experience of
early students. The key contributions of this paper include:

e  Course-agnostic student performance models. We present the first course-agnostic modeling
techniques for predicting student performance on future questions in newly introduced courses
where no previous students have yet taken this course. Even though our course-agnostic models
have no access to training data logs of students taking the new course, they exhibit predictive
performance comparable to conventional BKT and PFA models — found in many real-world 1TSs
— which were trained on data from thousands of students taking the new course.

e Inductive transfer learning for efficient tuning. We use transfer learning techniques to
efficiently tune our pre-trained course-agnostic performance models to individual new courses by
learning question- and KC-specific parameters. Our experiments show how our approach leads to
more accurate performance predictions than conventional modeling techniques in settings in which
only limited student log data from the new course is available (<100 students).

e Guidance for practice. By analyzing data from five different courses offered by a large-scale ITS
this work provides insights which can inform the design of future ITSs. Among others, our
experiments show how manually assigned difficulty ratings and information about distinct learning
contexts provided by human domain experts during content creation can be used to boost the
prediction accuracy of course-agnostic SPMs. Further, going against common guidance, our study
of various existing SPM approaches reveals that large logistic regression models can outperform
classical lower dimensional SPMs even in data starved settings (when training on <10 students).

2. Related Work
2.1  Transfer Learning

Transfer learning (TL) techniques are a class of machine learning (ML) algorithms which aim to
improve model performance in a target domain (e.g., a new course) by leveraging data from a different
but related source domain (e.g., existing courses) (Zhuang et al., 2020). TL is particularly attractive
when only limited target domain data is available, but source domain data is abundant. Via pre-training
on source domain data, TL can acquire a model for the target domain even when no target domain data
is available. TL techniques enjoy great popularity in domains such as image classification and machine
translation but have also been applied to various educational data mining (EDM) problems.

In the context of learning management systems (LMS), TL methods that combine data from
multiple different courses or from multiple offerings of the same course have been explored for
predicting academic performance (e.g., Tsiakmaki et al., 2020). Data collected from multiple courses
has been used to predict the student’s likelihood of completing future courses (Huynh et al., 2020) and
their degree program (Hunt et al., 2017). In the setting of massive open online courses (MOOCs) TL
can improve dropout predictions (e.g., Boyer & Veeramachaneni, 2015). Unlike all above-mentioned
transfer approaches, in this work we do not predict a single attribute related to a current course (e.g.,
pass/fail, student dropout), but rather trace the changing likelihood with which students answer
individual questions inside an ITS correctly over time based on their interaction history.

More related to the ITS setting considered in this paper, Paquette et al. (2015) studied the transfer
of student gaming detection models between different courses and ITSs. Using simulated students,
Spaulding et al. (2021) investigated an approach for transferring cognitive models of language learning
between educational games. Multi-task learning has been proposed to learn useful representations via
pre-training on response correctness and interaction time prediction tasks (Kim et al., 2021). Baker
(2019) framed the problem of transferring student models (e.g., gaming detection models, SPMs, ...)

14



between different learning systems as an open challenge at the EDM2019 conference. Recently, Baker
etal. (2021) surveyed related work and discussed directions for future research on sharing models across
different learning systems. While our work does not consider the transfer of SPMs across different ITSs,
it focuses on the question of transferring SPMs between different courses inside the same ITS.

2.2 Student Performance Modeling

Tutoring systems rely on SPMs to estimate a student's ability level based on sequential log data that
describes their prior interactions with the system. There are three major categories of SPMs: (i) Markov
process-based inference, (ii) logistic regression and (iii) deep learning-based approaches. Markov
process-based techniques, such as Bayesian Knowledge Tracing (BKT) (Corbett & Anderson, 1994)
and BKT+ (Khajah et al., 2016), are well established and can for example be found in the Cognitive
Tutor (Koedinger & Corbett, 2006) and the ASSISTments system (Feng et al., 2009). Most probabilistic
approaches estimate a student's ability level by performing inference in a two state Hidden Markov
Model — one state to represent mastery and one for non-mastery. Logistic regression models rely on a
set of manually specified features which summarizes the student's interaction sequence. Given an input
vector with feature values, the regression-based SPM estimates the probability that the student is
proficient in a certain question or KC. Some approaches in this class are PFA (Pavlik et al., 2009),
DAS3H (Choffin et al., 2019), Best-LR (Gervet et al., 2020) and Best-LR+ (Schmucker et al., 2022).
Deep learning-based approaches take as input the same sequence data, but unlike logistic regression
techniques can learn suitable features on their own without requiring human feature engineering. Deep
learning models benefit from large-scale training data, but as of today, BKT- and logistic regression-
based SPMs are still competitive with deep learning in multiple domains (e.g., Khajah et al., 2016;
Schmucker et al., 2022). A survey on recent deep learning-based SPMs is provided by Liu et al. (2021).
Importantly, all above-mentioned SPM approaches rely on course-specific parameters (e.g.,
parameters that represent the difficulty of individual questions and KCs in the target course) that need
to be learned from target course data. This makes these models inapplicable in our cold start setting
where a new course is first introduced and there is no data for training these parameters available yet.
Lastly, we want to mention recent works (Gervet et al., 2020; Zhang et al., 2021) which
investigated another SPM related cold-start problem. There, the question is how accurate are SPM
predictions for new students for which we have only observed a few interactions. This is different from
the cold-start problem studied in this paper — it addresses the question of how to handle a new cold-start
student in an existing course, whereas we address the question of how to handle a new cold-start course.
Related to the inductive transfer setting studied in this work, is a short-paper by Zhao et al. (2020) which
proposed an Attentive Neural Turing Machine architecture that requires less training data than an LSTM
based approach. Unlike our study, they only experiment with small-scale student log data (<30 students,
<1000 responses) and do not leverage data collected from existing courses for knowledge transfer.

3. Problem Setting
3.1  The Student Performance Modeling Problem

Formally, we denote the sequence of student s’s past interaction with the system as xgq., =
(Xs1, s X5¢). The tuple xg = (s, qs,ts Cs,e) rEpresents the data collected for student s at time-step ¢.
Variable g, . indicates the answered question, y, . € {0,1} is binary response correctness and cg ¢ is an
aggregation of additional information about question difficulty, learning context, read materials,
watched videos and time. Provided student s’s history xg 1., and a question g .4, @ SPM f,,, estimates
PWst+1 = 11 qse+1,Xs1:¢) as the probability of s responding correctly to g .44 if it were asked next.
All SPMs considered in this paper are parametric and defined by a vector w € R%. Using training
data D = {Xs, 1.¢,, - Xs,,1:t,} CAPturing interaction logs from previous students one can determine a
vector wy, for predicting the performance of future students by solving the minimization problem
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wp = arg min z Z L(fiw (a5 %s1:0-1), Vs t)- (1)
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Here, L(Jst,Vst) = — Vselog(Pse) + (1 — yg)log(1 —Fg,)) is the negative conditional log-
likelihood of observed student response correctness y » given model prediction ys . = f,,(4s.¢, Xs,1:4-1)
and student history x; 1.,—4. This function penalizes predictions ¥ , that deviate from observation y; ..

3.2 Dataset

For our analysis we rely on the Squirrel Ai ElemMath2021 dataset (Schmucker et al., 2022) which
provides log data from multiple mathematics courses for elementary school students collected over a 3-
month period. Overall, the dataset describes about 62,500,000 interactions from over 125,000 students.
Going beyond pure question-solving activities, ElemMath2021 provides insights into how students
interact with learning materials. During content creation human domain experts assign each question a
difficulty rating between 10 and 90 and specify a prerequisite graph to describe dependencies between
individual KCs. ElemMath2021 further records information about the learning context by assigning
each learning activity to one of six categories of study modules (e.g., pre-test, post-test, review, ...).

Our study of the transferability of SPMs partitions ElemMath2021 into multiple course-specific
datasets. We selected the five courses with the most students, which we refer to as C6, C7, C8, C9 and
C40. Together, these five courses capture approximately 26,300,000 interactions from over 47,000
students (Table 1). Each student only participates in a single course which implies disjoint student
populations across courses. In terms of covered KCs and used questions the courses are also disjoint
except for C9 and C40 which have an overlap of less than 5%. These properties allow us to measure
the transferability of SPMs to different courses involving disjoint students and disjoint questions and
KCs.

Table 1. Five largest ElemMath2021 courses by student number. Avg. responses is the average
number of submitted responses per student. Avg. correctness is the proportion of correct student
responses.

course C6 C7 C8 C9 C40
# of students 11,864 9,423 10,296 8,531 7,487
# of questions 2,483 2,226 2,438 2,407 1,307
# of KCs 164 145 159 157 87

# of responses 3,262k 1,934k 2,142k 1,407k 1,228k
avg. responses 275 227 187 165 164
avg. correctness  71.30% 69.62% 69.47% 68.68% 62.39%

4. Approach
4.1  Naive Transfer Approach

The naive transfer setting is concerned with using student log data Ds from existing source courses S =
{S1, ..., Si} to learn an SPM that can be applied to any future target course T. Crucially, such a course-
agnostic SPM approach cannot rely on any parameters that describe course-specific features. Because
existing SPMs rely on parameters that capture properties of individual questions and KCs, they require
access to target course data D for training and are thus not applicable when such data is not available.
As afirst step in the design of course-agnostic SPMs we identify a set of features which induces
model parameters that do not require target course data for training. For this we study existing logistic
regression-based SPMs. Each regression model relies on a distinct feature function @ = (¢4, ..., ¢4)
which outputs a real-valued feature vector that describes student s's prior interaction history x 4., and
information about the next question g .+1. The trained model then uses this feature vector as input to
estimate the probability that s will respond correctly to question g ¢4 if it were asked next as
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P(J/s,t+1 =1 | qs,t+1vxs,1:t) =0 (WTCD(QS,Hl'xs,l:t))- (2

Here w € R is the learned weight vector that defines the model and o(x) = 1/(1 + e~*) € [0,1] is
the sigmoid function whose output can be interpreted as the probability of correct response.

Because conventional SPMs use feature functions that target course-specific features they do
not generalize to new courses. As an example, consider the Best-LR model by Gervet et al. (2020). It
features an ability parameter a; for each individual student and difficulty parameters &, and j; for each
individual question g and KC k. Further, Best-LR uses count features for the number of prior correct
(cs) and incorrect (f;) responses of student s overall and for each individual KC k (i.e., cg, and f5 ).
Defining scaling function ¢(x) = log(1 + x), the Best-LR prediction is

Prest1a(Vset = 1] Gsern Xsie) = 0@ = gy, + 7eb(s) + 7190
* Z Br + VP (csi) + prd(si))- ®)

KEKC(qs,t+1)

One can interpret the Best-LR feature function as a tuple @ = (®,, ;) where @, is course-
agnostic (i.e., total counts) and @, is target course-specific (i.e., student ability, question and KC
difficulty and counts). Because — to the best of our knowledge — this is the first work that investigates
course-agnostic SPMs we introduce simple but reasonable baselines by taking conventional SPM
approaches and reducing them to their course-agnostic feature sets.

From Best-LR we derive a course-agnostic SPM called A-Best-LR. A-Best-LR uses overall
count features ¢, and f; to indicate the number of student s’s prior correct and incorrect responses. The
two parameters y and p consider the number of prior correct (¢ x) and incorrect responses (f x) for the
current KC k — the same y and p parameters are used for all KCs. Best-LR’s ability parameters are
reduced to a single bias term « that is constant over time for all students. The A-Best-LR prediction is

pA-Best—LR(ys,t+1 =1 | qs,t+1'xs,1:t) =0 (0‘ + 1. p(cs) + rp(fs) + V¢(Cs,k) + P¢(fs,k))- (4)

By avoiding course-specific features A-Best-LR can be trained on source data Dg from existing courses

and then be used for any new course T. Giving a similar treatment to other common SPMs we define:

e A-BKT: We train a single BKT parameter set shared for all KCs. We then estimate student
performance by using this parameter set to initialize a separate BKT model for each individual KC.

e A-IRT: Wetrainan IRT (Rasch) model that uses the same difficulty parameter (&) for all questions.
We then use this single difficulty parameter to trace each student’s ability over time for each KC
and derive performance predictions. The student ability parameters are updated after each
response.

e A-PFA: We train a reduced 3-parameter PFA model that uses the same difficulty (8), correctness
(y), and incorrectness count parameters (p) for all KCs.

e A-DAS3H: We train a reduced DAS3H model that uses a shared difficulty parameter (&) for all
questions and KCs, a shared constant ability bias term (&) for all students and a single a set of time-
window based correctness and incorrectness count parameters for all KCs.

e A-Best-LR+: We train a reduced Best-LR+ model that augments the A-Best-LR feature set
(Equation 3) with response pattern and smoothed average correctness features (Schmucker et al.,
2022). In addition, the model learns a single set of DAS3H time-window (Choffin et al., 2019), R-
PFA (Galyardt & Golding, 2015) and PPE (Walsh et al., 2018) count parameters used for all KCs.

Related to A-BKT, Corbett & Anderson (1994) evaluated a version of BKT which uses a single set of
BKT parameters for all KCs that is trained and tested on data from the same course. Related to A-PFA,
Maier et al. (2020) proposed to learn PFA parameters for KCs with enough training data and to use the
average of the parameters to model KCs with insufficient data in the same course. A-BKT and A-PFA
are different in that they train on data from existing courses and then make predictions for a new course.

Conventional SPMs —including all the above — base their estimates solely on log data that describes
the student’s question-answering behavior. Recently, it has been shown how alternative types of log
data collected by modern ITSs can improve logistic regression-based SPMs (Schmucker et al., 2022).
The use of such alternative types of features is particularly interesting in the naive transfer setting

17



because most conventional SPM features are course-specific and are thus not transferable. The
ElemMath2021 dataset captures various types of student interaction data. In our experiments we
consider information related to student video and reading material usage, learning context, question
difficulty ratings assigned by human domain experts during content creation, KC prerequisite structure
and the response- and lag-time features introduced by SAINT+ (Shin et al., 2021).

4.2 Inductive Transfer Approach

Most conventional SPM approaches rely on parameters that capture question- and KC-specific
attributes. By training and testing on target course data D, using a 5-fold cross validation, Table 2
compares the performance of course-agnostic SPMs with models that use the same course-agnostic
feature set, but which are allowed to learn additional course-specific parameters to capture question-
and KC-difficulty. We observe that the inclusion of question- and KC-specific parameters leads to large
improvements in prediction accuracy and closes the gap to conventional SPM techniques (Table 3).
Table 2. When training and testing on data from the same course, adding course-specific question-
and KC-difficulty parameters to the course-agnostic A-AugLR model increases accuracy (ACC) and
AUC.

ACC (%) AUC (%)
A-AugLR 72.02 69.48
A-AugLR+KC 74.00 74.99
A-AugLR+quest. 76.34 79.39
A-AugLR+KC+quest. 76.37 79.39

Motivated by this observation, we propose an inductive TL approach that uses small-scale
target course data D to tune a pre-trained course-agnostic SPM to a new course T by learning additional
question- and KC-specific parameters. Formally, the pre-trained agnostic and target model are defined
by weight vectors ws € R!®sl and w; € RI®sI*127l respectively. We use L, regularization to subject the
target weights wy to a Gaussian prior " ((wg, 0)", 1) and control the degree of regularization using a
penalty parameter A € R,. The regularized maximum likelihood objective is

ts
A
wr = arg min 21w = (\F) B+ D7 > L(fuldse Xore1). Vse) ©)

SEDT t=1
By using a prior for wy that is based on the previously learned wg, we can mitigate overfitting
and can learn a suitable target model using only very limited training data D,. With increasing amounts
of recorded learning histories in D the objective focuses increasingly on model fit. For our experiments
we determine the penalty parameter value by evaluating A € {0.01,0.05,0.1,0.5,1,5,10, 100} using
the first split of a 5-fold cross validation on the C6 training data. We found 4 = 5 to be most effective

for different amounts of tuning data and use it for all our experiments.

5. Experiments
5.1  Evaluation Methodology

As is common in prior work (e.g., Choffin et al., 2019; Gervet et al., 2020) we filter out students with
less than ten answered questions. In the naive transfer setting, we use each course once to simulate a
new target course T € {C6, C7, C8, C9, C40}. For each target course T we train one course-agnostic
SPM using source data Ds from the other four courses and then evaluate predictions on the unseen
target dataset D. For the inductive transfer experiments, we perform a 5-fold cross-validation on the
student level where in each fold 80% of students are used as training set D ,..;,, and the remaining
20% are used as test set Dr ... TO simulate small-scale training data, we sample a limited number of
students (5, 10, ...) from training set Dt ,.;,- Because the ElemMath2021 courses tend to introduce
topics in the same sequential order, we only sample students that reached the last topic — sampled
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students might have skipped or revisited individual topics. This approach mimics the case where the
course designer can collect interaction log data from a small number of students during a pilot study
before large-scale deployment. We report model performance using accuracy (ACC) and area under
curve (AUC) metrics. AUC is a common evaluation metric for SPMs which can be interpreted as the
probability that the model ranks a random correct student response higher than a random incorrect
response.

Table 3. Reference model performance. Performance metrics achieved by conventional course-
specific student performance models that were trained and tested on data from the same course.

C6 Cc7 C8 C9 C40 Averaged
model \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AuUC
Always correct  71.30 50.00 69.62 50.00 69.47 50.00 68.68 50.00 62.38 50.00 68.29 50.00

BKT 7489 7339 7166 6935 7224 7043 7201 7009 6809 7100 7178 70.85
PFA 7466 73.02 7152 6919 7213 7021 7187 6994 6785 7087 7161 70.65
IRT 7552 75.66 73.05 7322 7328 7321 7240 7236 6866 7205 7258 73.30
DAS3H 7731 7815 7459 76.06 7505 7618 7409 7538 70.87 7520 7438 76.19
Best-LR 78.42 8030 7595 7844 7658 78.97 7633 79.08 7310 78.07 76.08 7897
Best-LR+ 78.75 80.85 76.18 7883 76.90 7939 76.69 7958 73.62 7881 7643 79.49

Our code builds on the public GitHub repository by Schmucker et al. (2022) which implements
various SPMs. We build on their regression models and leave their hyperparameter choices unchanged.
We use pyBKT (Badrinath et al., 2021) to implement the BKT experiments. For our naive and inductive
transfer experiments we use PyTorch and train each model for 200 epochs using the Adam optimizer
with learning-rate « = 0.001. As a reference, Table 3 shows average performance metrics of common
SPM approaches that were trained and tested on the same course using a 5-fold cross-validation. To
increase reproducibility, we provide detailed descriptions of the evaluated features and SPMs in an
external appendix hosted on GitHub (https://github.com/rschmucker/TransferableSPM-Appendix).

5.2  Naive Transfer Experiments

Feature Evaluation. We evaluate the benefits of different features for course-agnostic SPMs. For each
feature, we train an augmented A-Best-LR+ model using the A-Best-LR+ feature set plus one of several
possible additional features, described below. We use A-Best-LR+ because it combines features that
were found most useful in earlier SPMs and it yields the most accurate predictions among all considered
course-agnostic baseline models in our experiments (Table 5).

Table 4 shows the ACC and AUC scores when adding each of several additional features to A-
Best-LR+. The most useful additions are the one-hot features that encode question difficulty ratings
assigned by human domain experts during content creation — these improve performance on average
over all five courses by 0.24% ACC and 1.07% AUC. The one-hot learning context features improve
the average AUC score by 0.14%. The count features that track the number of prior correct and incorrect
responses to questions of a certain difficulty or learning context, lead to smaller improvements
compared to their one-hot counterparts. The lag time and response time features improve AUC scores
on average by 0.15% and 0.11%. The post- and pre-requisite features derived from the KC dependency
graph did not benefit the course-agnostic SPMs. Similarly, the count features that summarize the
students' video and reading material usage did not improve the performance predictions. One limitation
of these two count features is that they do not capture the relationship between the content covered by
individual learning materials and questions.

Table 4. Naive transfer feature evaluation. Using the A-BestLR+ feature set augmented with one
additional feature we trained course-agnostic models on four source courses and evaluated on a new
target course. The marker X indicates which additional features yielded the largest improvements.

C6 c7 C8 C9 C40 Averaged
model \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC Acc AUC
A-BestLR+ (base) 73.86 67.33 7162 6541 7192 65.79 7236 68.92 67.59 6831 7147 67.15
current lag time 7391 6748 7155 6542 7200 66.00 7240 69.02 67.65 6838 7150 67.26
prior resp. time 7394 6761 7157 6539 7202 6598 7239 69.12 6746 6841 7148 67.30
context one-hot 7383 6724 7165 6556 7194 6595 7238 69.02 67.65 6870 7149 67.29

XX X
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context count 7387 6738 7153 6533 7204 6579 7241 69.09 67.71 6854 7151 6723 X
difficulty one-hot  74.09 68.63 7188 66.80 7222 67.21 7254 69.71 6782 6884 7171 6824 X
difficulty count 7384 6734 7160 6556 7193 66.00 7233 69.00 6759 6852 7146 67.28 X

prereq count 7388 6727 7158 6544 7191 6583 7231 6892 6755 6828 7145 67.15
postreq count 7361 66.48 71.68 65.03 7198 65.96 7238 69.22 67.39 68.15 71.41 66.97
videos count 7384 6732 7159 6541 7195 6575 7230 6891 6752 6820 7144 67.12

readings count 7383 6741 71.60 6548 7196 65.82 7237 6893 6753 68.19 71.46 67.17

Agnostic AugmentedLR. Given the experimental results in Table 4, we created a final model (which
we call A-AugLR) that incorporates all the features from A-Best-LR+ (base), plus all features marked
by X in Table 4, namely lag and response time, learning context and question difficulty. To complete
our experiments on the naive transfer setting, we then compared the performance of A-AugLR to the
naive transfer baselines defined in Subsection 4.1. The results of this comparison are shown in Table 5.
We observe that the course-agnostic SPMs derived from BKT, PFA, IRT and DAS3H struggle in the
naive transfer setting and yield low AUC scores. The A-Best-LR+ model uses additional features to
capture aspects of long- and short-term student performance over time. On average, its predictions yield
0.37% higher ACC and 1.09% higher AUC scores compared to the A-Best-LR model it builds on.
The A-AugLR model yields the best predictions in the naive transfer setting. Compared to A-
Best-LR+, the A-AugLR models are on average 0.38% more accurate and their AUC scores are 1.76%
higher. This shows how additional information provided by domain experts during content creation can
enable accurate performance predictions on cold start courses in the naive transfer setting. Importantly,
even though our course-agnostic A-AugLR models were fitted using data from different source courses
their prediction accuracy is on par with course-specific BKT and PFA models which were trained on
target course data (compare the A-AugLR row in Table 5 to the BKT and PFA rows from Table 3).

Table 5. Naive transfer performance. We used each of the five courses to simulate a new target course
and trained course-agnostic performance models using student data from the other four source
courses.

C6 c7 C8 C9 C40 Averaged
model\in% ACC AUC ACC AUC ACC AUC ACC AUC ACC AuUC ACC AuC
A-BKT 73.25 63.29 7058 60.87 7104 60.85 70.93 6230 6556 63.87 70.27 62.57
A-PFA 73.27 6354 70.75 6059 7113 61.23 70.92 6229 6555 63.13 70.32 62.16
A-IRT 59.50 61.82 58.36 59.55 5750 59.45 58.04 60.96 58.33 62.72 58.35 60.90

A-DAS3H 73.29 63.70 70.81 60.84 7115 6131 7098 6241 6559 6354 70.36 62.36
A-Best-LR 73.55 66.38 7135 64.17 7174 6501 7199 67.87 67.13 66.86 71.15 66.06
A-Best-LR+ 73.86 67.33 71.62 6541 7192 6579 7236 68.92 6759 6831 7147 67.15
A-AugLR 7428 69.11 7180 67.21 7235 68.19 7276 70.52 68.05 69.52 71.85 68.91

5.3 Inductive Transfer Experiments

Here, we evaluate our inductive TL approach (I-AugLR) that uses small-scale target course data Dy to
tune a course-agnostic A-AugLR model — pre-trained on log data from the other courses — to the target
course by learning course-specific difficulty parameters. We also evaluate a course-specific model (S-
AugLR) which use the same feature set as I-AugLR but does not use a pre-trained model. We measure
the amount of target course data for tuning in humber of students and experiment with values in
{0,5, 10, 25,50,100,250,500,1000}. The 0-student case is equivalent to the naive transfer setting.

Figure 1 compares the performance of our inductive TL method (I-AugLR) with conventional
SPM approaches and S-AugLR trained using only target course data Dr. Due to the page limit, we only
plot model performance for C40. By tuning a pre-trained A-AugLR model, I-AugLR can mitigate the
cold-start problem for all five courses and benefits from small-scale log data. Given as little as data
from 10 students, the I-AugLR models consistently outperform standard BKT and PFA models that
were trained on logs from thousands of target course students (Table 3). Among all considered SPMs,
I-AugLR yields the most accurate performance prediction up to 25 students for C7, up to 100 students
for C6 and C8 and up to 250 students for C9 and C40. Among the non-TL approaches, Best-LR is most
data efficient and yields the best performance predictions when training on up to 500 students.
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Figure 1. Training student performance models with different amounts of student log data.

6. Discussion

Our experiments show that our proposed TL techniques can mitigate the SPM cold-start problem for
new courses by leveraging student interaction data from other existing courses. In the naive transfer
setting where no target course data is available, the course-agnostic A-AugLR models trained on data
from existing source courses yielded prediction accuracy on par with standard BKT and PFA models
that use training data from thousands of students in the target course. One key ingredient of our course-
agnostic SPMs is additional information about question difficulty and learning context provided by
domain experts during content creation. While these features improve SPM predictions, the need for
manual annotations puts an additional load on the content creators. Further, the success of our transfer
approach depends to a degree on the domain expert’s ability to assign accurate question difficulty labels.

In the inductive transfer setting we use small-scale target course data (e.g., collected during a
pilot study) to tune pre-trained course-agnostic SPMs. This allows us to overcome the limitations of the
naive transfer setting by learning target course specific question- and KC- difficulty parameters. Our
parameter regularized approach yields better predictions than conventional SPM approaches when only
limited target course data (<100 students) is available. Surprisingly, we found that among the non-TL
approaches, Best-LR (Gervet et al., 2020) yielded the most accurate predictions when training on less
than 500 students for all five courses. This is interesting because low-parameter models such as BKT
(Corbett & Anderson, 1994), PFA (Pavlik et al., 2009) and IRT (Rasch, 1960) are commonly believed
to be more data efficient than more complex logistic regression models that contain many more
parameters. What sets Best-LR apart from these three models, is that its parameters describe student
performance using multiple levels of abstraction (question-, KC- and overall-level). Future work might
investigate this phenomenon further using log data from multiple different ITSs.

One limitation of our study is that it focuses on a set of five courses offered by the same ITS.
This has advantages because the course log data is of consistent format and content creators follow
similar protocols. Still, it prevents us from answering the question of whether SPMs are transferable
between different tutoring systems (Baker, 2019). Another related limitation is that all considered
courses cover mathematics topics for elementary school students. Our study did not investigate the
transferability of SPMs across different subjects or grade levels (e.g., middle school, high schoal, ...).

7. Conclusion

The increasing popularity of intelligent tutoring systems (ITSs) induces a need for student performance
modeling (SPM) techniques that are flexible enough to support frequent new course releases as well as
changes to existing courses. This paper proposes two transfer learning approaches for mitigating the
cold-start problem that arises when a new course is introduced for which no training data is available.
In the naive transfer setting where no new course data is available, we rely on student interaction
sequences from existing courses to learn course-agnostic SPMs that can be applied to any future course.
In the inductive transfer setting where small-scale new course data is available (e.g., collected during a
pilot study), we show how one can tune pre-trained course-agnostic models to a specific course by
learning question- and KC- (i.e., skill) difficulty parameters. Our experimental evaluation on student
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log data from five different mathematics courses showed how both transfer approaches mitigate the
cold-start problem successfully. This work represents a first step in the design of SPMs that are
transferable between different ITS courses. The success of our approach depends significantly on (i)
automatically learned course-independent parameters that characterize how quickly students learn a
skill as a function of the number of prior practice attempts, and (ii) information provided by human
domain experts in the form of difficulty values for questions in the new, target course. We hope that
transfer learning techniques such as the ones discussed in this paper will enable ITS designers to provide
effective adaptive instruction for early adopter students.
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