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Abstract: Task constraint feedback is the collective name for any kind of feedback system that 
checks whether problem-defined constraints were fulfilled by students upon submission of 
work. This can be as simple as checking if certain programming constructs exist, or if a specific 
algorithm or data structure required by the problem is fulfilled. Most of these systems use static 
analysis (Fischer, 2006; Gotel, 2008) or natural language processing techniques (Lane, 2005) to 
generate feedback. A transformer is a neural network for sequence processing, such as natural 
languages. Previous work has shown that transformers can be generalized for programming 
language tasks such as code summarization. In this study, we used the CodeBERT transformer 
to classify or tag algorithms implemented in some code snippets to check constraint satisfaction. 
Using a custom dataset containing source code aiming to implement algorithms, we show that 
CodeBERT is capable of learning structures of how code is implemented regardless of how a 
programmer names the code. Averaging each label’s f1-score, the model was able to obtain an 
average of 0.85, which showed promising results in the dataset. 
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1. Introduction 
 

Code summarization is one of the heavily researched areas in programming language processing. (Alon, 
2019; Yahav, 2019) It aims to give a semantic description of the input code snippet. For example, a merge 
sort function may be described by a code summarization model as a sort. This paper deals with a subset 
of code summarization that the study calls algorithm detection, which focuses on classifying functions 
more specifically. Given a code snippet, an algorithm detection model attempts to find all the included 
algorithms and label them as such. This model will form the basis for developing a part of an intelligent 
tutoring system (ITS) for Project CodeC, a competitive programming application currently under 
development at Ateneo de Naga University. Specifically, a task-constraint based feedback system that 
analyzes an input whether it contains the required algorithms by the problem setter. 

In this paper, the researchers aim to develop a sequence model that acts as a multilabel classifier 
to tag seven introductory algorithms and two introductory data structures from code snippets. The 
included programming languages in the study are Python, Java, and JavaScript, which are covered by 
the ITS being developed. Furthermore, the included algorithms and data structures would be insertion 
sort, merge sort, selection sort, quick sort, bubble sort, linear search, binary search, linked lists, and 
hash maps. Since this paper focuses on algorithm detection, evaluation of real-world student 
submissions will not be studied, but hopes to serve as a foundational study for a future ITS. 
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2. Review of Related Literature 
 

2.1 Programming Language Processing 
 

Sequence models are machine learning algorithms that are designed to input and/or output sequential 
data such as time series, audio, signals, texts, and videos. Multiple-sequence neural networks have been 
proposed with varying performances on different tasks in the past decades. In this paper, the researchers 
make use of the transformer that is currently the state-of-the-art sequence model. (Vaswani, 2017) 
Transformer models do not process the input sequentially, which renders it easily parallelizable. The 
auto-encoding transformer BERT (Jacob Devlin, 2019) was pre-trained on a corpus of 16GB of data, 
while RoBERTa (Liu, 2019) had a larger corpus of 160GB and achieved better results than the former. 
Recent breakthroughs have shown that sequence models can be generalized to programming 
languages as well. Central themes in research include code summarization (Rui Xie, 2021) which can 
help in automatically commenting on a snippet of code, code-clone detection (Hui-Hui Wei, 2017) 
which can be used for finding functional similarities for two code snippets that look distinct from each 
other, and code completion (Alon, 2020) which can be used for assistance when coding. Furthermore, 
these models can learn programming language semantics by leveraging the Abstract Syntax Trees 
(AST), (Lili Mou, 2016; Long Chen, 2019) encoding AST paths into tokens which can be processed by 
traditional networks (Alon, 2019; Yahav, 2019) and by Hoare triples of a program. (Piech, 2015). 
Furthermore, the CodeBERT autoencoding transformer is a replica of RoBERTa but trained on an 
entirely different dataset, which is composed of Java, Python, and JavaScript snippets. (Feng, 2020) 

 
2.2 Task-Constraint Feedback 

 
Task-constraint feedback refers to systems that propagate feedback on whether some required tasks 
have been met by the student. Some of the research done includes WeBWork, which attempts to perform 
tests that mimic software quality assurance testing (Gotel, et al., 2008) and ProPL, which is a dialogue- 
based system that aims to help programmers learn program planning by asking questions (Lane, H. C. 
2005). Both of these systems give a response on whether the student has correctly satisfied the given 
constraints. This paper aims to provide a system that is capable of detecting algorithms in a submitted 
snippet that can be used for teaching algorithms and related classes. 

 
3. Technical Background 

 
3.1 CodeBERT 

 
A transformer is an encoder-decoder sequence model that is non-recurrent, that is, it takes the input 
sequence without the need for loops like Recurrent Neural Networks would use. (Vaswani, 2017) The 
BERT family of transformers are categorized as autoencoders, that is, they only contain the encoder 
part, which can be used for compressing the input data. (Devlin, 2019) 

The CodeBERT transformer is an exact replica of RoBERTa trained in six different programming 
languages. (Feng, 2020) Furthermore, CodeBERT was trained using unimodal data, consisting solely 
of code snippets, and bimodal data, comprising a pair of a code snippet and an English language 
description of the snippet. Since CodeBERT is already a trained transformer, this study utilizes the 
learned features to make better predictions from a small dataset. To optimize the model, the researchers 
fine-tuned the last three out of twelve encoding layers of CodeBERT. This enables CodeBERT to learn 
the dataset gathered by the researchers, instead of relying solely on the artificial neural network built 
on top of CodeBERT. 

 
 

4. Methodology 
 

4.1 Dataset and Labeling 
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Since there are no publicly available datasets on programming language processing that aim to classify 
algorithms, the researchers gathered this study’s dataset from public GitHub repositories containing 
Python, Java, and Javascript source codes which aim to implement included algorithms and data 
structures. Figure 1 shows that linear search is the most-gathered algorithm in the custom dataset and 
binary search has the fewest. Most of the files in the dataset implement only one of the algorithms in 
the study. After labeling, features that do not contribute to code semantics, such as extra whitespaces, 
comments, and docstrings were removed. The researchers achieved an almost perfect agreement of 
0.829 during labeling according to Kraemer’s extension of the Kappa coefficient. (McHugh, 2012) 

 

Figure 1. Number of Labels per Algorithm/Data Structure. 
4.2 Training 

 
Initially, the model was trained with frozen CodeBERT weights. That is, CodeBERT was used as a 
feature extractor under the assumption that it had learned some basic algorithms during its pre-training 
tasks. However, this was not the case, and the model had poor performance. Two main problems were 
found. First, CodeBERT did not learn these algorithms at all during the pre-training. Second, the model 
merely memorized identifier names and function orders. 

For the first problem, the researchers fine-tuned the first three encoding layers of CodeBERT. This 
enabled CodeBERT to learn algorithm implementations on top of programming languages. The output 
is used as an input to a feedforward neural network. For the second problem, the dataset was augmented 
as described in the next subsection. 

 
4.3 Data Augmentation 

 
To address the problem where the model memorized identifier names, the dataset was augmented by 
swapping identifier names (function names, class names, and variable names) with randomly generated 
strings of lengths ranging from 1 to 3. The short length maximizes the probability that CodeBERT will 
not tokenize the identifier as unknown. Otherwise, the model might have a bias towards unknown tokens. 
The researchers took steps to ensure that the mappings are bijective. Each file was augmented between 
0 to 6 times to ensure randomness in identifier names. This will ensure that the model used in the study 
learns the structure rather than names. However, language keywords and common functions were not 
augmented as these are usually crucial to how the algorithm and the programming language work. 

Another problem found was that the model was memorizing the ordering of functions in the file. 
To mitigate this problem, the researchers concatenated two files of different programming languages 
that do not have common algorithms implemented and added both concatenation orders into the dataset 
under some probability. The resulting files were then augmented further with random strings from the 
first augmentation technique discussed 

 
4.4 Evaluation 

 
Precision, recall, and f1-score were recorded for each label for model evaluation purposes. In this paper, 
the researchers maximized the precision to ensure that an unmet task will not pass the constraint checker.
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5. Results 

 
5.1 Experimental Setup 

 
The first experiment result shown in this paper combines the use of augmented and original datasets 

for the train set. The test set’s augmentation does not use random identifiers. The second experiment 
removes all the unaugmented code snippets from the train set and moves them to the test set. Hence, 
the distribution of data between the train set and test set in the second experiment is completely different. 
The goal is to have the model generalize well. 

 

Figure 2. Model architecture. 
 

Figure 2 illustrates the model architecture. To prevent overfitting the dataset, a dropout layer was 
used prior to feeding the output of CodeBERT into the artificial neural network. Preliminary 
experiments had all CodeBERT weights frozen. However, this proved ineffective and incapable of 
overfitting even the training set. Fine-tuning the last three layers proved to be enough to learn the 
training set and generalize well on the test set. The output layer is activated by nine sigmoid functions, 
each pertaining to one class. The researchers used binary cross-entropy loss as the loss function. 

 
5.2 Training results 

 
The first experiment makes use of traditional data augmentation techniques wherein the augmented files 
are used as additional data points for the dataset in the hopes that this will increase the dataset size. 
Table 3 shows that the model was able to achieve very good results, achieving almost perfect f1 metrics. 
However, upon experimentation, one problem that was found was implementing an empty function 
named after one of the algorithms that the model incorrectly classifies. This shows that the model still 
uses identifiers to make predictions instead of relying purely on code structure. 

 
Table 1. Evaluation Metrics. (COM) refers to combined augmented and unaugmented dataset during 
training. (AUG) refers to having only the augmented dataset for training. 

 

Recall Precision F1 Score 
 COM AUG COM AUG COM AUG 

Quick Sort 0.938 0.78 0.988 0.957 0.963 0.86 
Merge Sort 0.936 0.74 0.994 0.962 0.964 0.836 
Selection Sort 0.935 0.81 0.944 0.85 0.939 0.829 
Insertion Sort 0.931 0.816 0.974 0.926 0.952 0.867 
Bubble Sort 0.919 0.824 0.989 0.836 0.953 0.83 
Linear Search 0.936 0.792 0.986 0.82 0.961 0.806 
Binary Search 0.914 0.911 0.991 0.886 0.951 0.899 
Linked List 0.93 0.876 0.981 0.838 0.955 0.906 
Hash Map 0.939 0.779 0.963 0.881 0.951 0.827 
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To mitigate the bias towards identifier names, the unaugmented dataset was removed from the training 
set and moved to the test set. Therefore, CodeBERT is forced to learn only the structural information 
since only files with random identifiers remain in the training set. As shown in Table 1, the model was 
able to generalize well despite having different data distributions between the train set, composed of 
augmented files, and the test set, composed of unaugmented files. 

Table 1 shows that the first experiment yielded better metrics. However, note that this is due to 
CodeBERT using identifier names to make predictions and cannot generalize well on experimental 
inputs. The second experiment shows slightly lower metrics. This is because the model does not make 
use of identifier names to create predictions but solely leverages on the function structure. Hence, the 
model was confused for some of the function names but still displayed good predictive power as 
demonstrated by the high precision value. 

 
5.3 Examples 

 
To experimentally evaluate each trained model, the researchers created a simple web-based application 
that tags algorithms present in a code snippet. To demonstrate the sanity of the model, Figure 3 shows 
a code snippet that implements a selection sort algorithm but is named “binary search”. Since the model 
was trained on random identifiers, it was able to correctly identify “selection sort” on structure alone. 

 

Figure 3. Implementing selection sort but binary search as identifier. 
 
 

6. Conclusion 
 

CodeBERT was originally trained for tasks such as code summarization and code search. However, the 
study was able to demonstrate that CodeBERT is not only capable of learning the meaning of a given 
code snippet, which can be used for automatic commenting, but can also learn structural information 
and make predictions from this. Furthermore, the model was able to generalize well and will mostly 
lead to correct predictions if the input code snippet is in the same distribution as the test set. 

Since the study has proven that CodeBERT is capable of learning structural information, a more 
enhanced model with more classes and datasets geared towards student submissions can be used for 
algorithm tagging. This model can eventually be used for a task-constrained feedback system. Both the 
code (Roldan, 2022a) and the dataset (Roldan, 2022b) for this study can be freely accessed on GitHub. 

 
6.1 Recommendations 

 
This study only investigates whether CodeBERT can learn code structure without the aid of abstract 
syntax trees or graphs. This does not prove that the model can properly predict algorithms from student 
submissions. Therefore, the researchers recommend that this area be studied and how useful the model 
will be in aiding task-constraint feedback. To do this, the researchers recommend gathering the dataset 
from competitive programming websites, such as Project CodeC, to eliminate expected bias against 
student submissions. To mitigate CodeBERT limitations, such as the 512 max token length and 
limitations of language choices, other models such as graph neural networks can be investigated. 
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